1)Чтобы уравнение имело 2 различных корня, дискриминант должен быть больше 0. ТОгда a=3; b=-2p; c=6-p. D=b^2-4ac=(-2p)^2 -4*3*(6-p)=4p^2-72+12p=4p^2+12p-72>0; p^2+3p-18>0;С метода интервалов получим(p-3)*(p+6)>0; p< - 6 U p > 3. p∈(-·бесконечность; - 6) U (3; +бесконечность). 2) Чтобы уравнение имело только один корень, дискриминант должен равняться нулю. Д=0 при р= -6 и при р =3. 3)Чтобы уравнение не имело корней, дискриминант должен быть меньше нуля. p^2+3p-18 <0; -6 < p < 3. p∈ ( -6; 3) 4) Хотя бы один корень, значит, или один или два корня, Поэтому объединим решения 1-го и 2-го случаев и получим ответ.x∈(-бесконечность ; -6] U [ 3 ; + бесконечность)
А задачка-то хорошая! Сумма номеров - это сумма арифметической прогресс с разностью 2. Пишем по формуле суммы, вместо d ставим 2, приравниваем к 435. Сокращаем двойки, получаем а+n-1=435/n Раскладываем 435 на множители = 3*5*29. Причём по условию домов больше 8 и число 435/n должно быть целым. Значит имеем несколько вариантов: домов в квартале 15 или 29 или 3*29=87 или 5*29=145 Начинаем с 15: а+14=29 а=15, т. е. первый дом в квартале имеет номер 15, восьмой - 15+7*2=29. Остальные варианты дают отрицательное число и нас по этому не интересуют. Итак, ответ: 29. Как-то так.
ТОгда a=3; b=-2p; c=6-p.
D=b^2-4ac=(-2p)^2 -4*3*(6-p)=4p^2-72+12p=4p^2+12p-72>0;
p^2+3p-18>0;С метода интервалов получим(p-3)*(p+6)>0;
p< - 6 U p > 3. p∈(-·бесконечность; - 6) U (3; +бесконечность).
2) Чтобы уравнение имело только один корень, дискриминант должен равняться нулю.
Д=0 при р= -6 и при р =3.
3)Чтобы уравнение не имело корней, дискриминант должен быть меньше нуля.
p^2+3p-18 <0;
-6 < p < 3. p∈ ( -6; 3)
4) Хотя бы один корень, значит, или один или два корня, Поэтому объединим решения 1-го и 2-го случаев и получим ответ.x∈(-бесконечность ; -6] U [ 3 ; + бесконечность)
Сумма номеров - это сумма арифметической прогресс с разностью 2.
Пишем по формуле суммы, вместо d ставим 2, приравниваем к 435.
Сокращаем двойки, получаем
а+n-1=435/n
Раскладываем 435 на множители = 3*5*29. Причём по условию домов больше 8 и число 435/n должно быть целым.
Значит имеем несколько вариантов:
домов в квартале 15 или 29 или 3*29=87 или 5*29=145
Начинаем с 15:
а+14=29
а=15, т. е. первый дом в квартале имеет номер 15, восьмой - 15+7*2=29.
Остальные варианты дают отрицательное число и нас по этому не интересуют.
Итак, ответ: 29.
Как-то так.