Есепті арифметикалық тәсілмен шеш. Таңертеңгі сағат 8-де атай мен немересі скутермен ауладан шығып, көлге кетті. Немересі 55 км/сағ жылдамдықпен, ал атасы баяу жүрді. 3 сағаттан кейін олардың арасында қашықтық 45 км болды. Атай скутермен қандай жылдамдықпен жүрді? SUM Land – 55 км/сағ t = 3 сағ S = 45 км v, – ? км/сағ км/сағ – 1 сағат : 1. ішіндегі алыстау жылдамдығы. 2. км/сағ – атайдың скутермен жүргендегі жылдамдығы.
A: первая деталь стандартная P1=3/5 вторая бракованная P2 = 2/4 = 1/2 Искомая вероятность P = P1*P2 = 3/5*1/2 = 0,3
B: извлечена одна деталь, и она бракованная - P1 = 2/5 извлечено 2 детали - одна стандартная, другая бракованная (случай из A) - P2 = 3/10 Искомая вероятность P = P1+P2 = 2/5+3/10 = 0,7
D: если нет стандартной, то 2 случая: вынута одна деталь и она бракованная и вынуто две детали и обе бракованные. P1 = 2/5, P2 = 2/5*1/4 = 1/10 Искомая вероятность P = P1+P2 = 2/5+1/10 = 0,5
E: Возможен лишь дин вариант - первая деталь стандартная, вторая бракованная (т.к. извлечение деталей идёт до появления бракованной). P = 3/5*2/4 = 3/10 = 0,3
первая деталь стандартная P1=3/5
вторая бракованная P2 = 2/4 = 1/2
Искомая вероятность P = P1*P2 = 3/5*1/2 = 0,3
B:
извлечена одна деталь, и она бракованная - P1 = 2/5
извлечено 2 детали - одна стандартная, другая бракованная (случай из A) - P2 = 3/10
Искомая вероятность P = P1+P2 = 2/5+3/10 = 0,7
C:
извлечены 2 стандартных детали, третья бракованная: P1 = 3/5*2/4*2/3 = 1/5.
извлечены 3 стандартных детали, четвёртая бракованная: P2 = 3/5*2/4*1/3*2/2 = 1/10
Искомая вероятность P = P1+P1 = 1/5+1/10 = 3/10 = 0,3
D:
если нет стандартной, то 2 случая: вынута одна деталь и она бракованная и вынуто две детали и обе бракованные.
P1 = 2/5, P2 = 2/5*1/4 = 1/10
Искомая вероятность P = P1+P2 = 2/5+1/10 = 0,5
E:
Возможен лишь дин вариант - первая деталь стандартная, вторая бракованная (т.к. извлечение деталей идёт до появления бракованной).
P = 3/5*2/4 = 3/10 = 0,3
х|x| = x
При х ≥ 0 уравнение имеет вид: х*x = x
х² = x
х² - x = 0
х(х -1) = 0
х = 0 или х = 1
(т.е при х ≥ 0 уравнение имеет два корня)
При х < 0 уравнение имеет вид: х*(-x) = x
- х² = x
- х² - x = 0
- х(х +1) = 0
х = 0 или х = - 1
(т.е при х < 0 уравнение тоже имеет два корня)
Имеем:
при х ≥ 0 при х < 0
х = 0 или х = 1 или х = 0 или х = - 1
=> корни: х = 0 или х = 1 или х = - 1
ответ: 3.