Пусть
а1 = 2 - количество очков, набранных за первую минуту игры,
а2 = 4 - количество очков, набранных за вторую минуту,
а3 = 8 - количество очков, набранных за третью минуту,
.......
an - количество очков, набранных за последнюю минуту.
Количество очков постоянно удваивается, значит дело мы имеем с геометрической прогрессией со знаменателем q = 2.
Каждую минуту очки суммируются, т.е. актуальна будет формула суммы первых n членов прогрессии. Формула выглядит так:
Sn=b1(q^n-1)/q-1, q не равно 1.
К тому же, эта сумма должна быть не меньше 10 000.
Подставляя известные величины в формулу, получим такое неравенство:
2(2^n-1)/2-1>10 000
2^n-1>5000
2^n>5001
Ничего не остается, как вручную подобрать n.
При n = 13 выражение 2n будет больше 5001 (2^13 = 8192). Это значит, что через 13 минут Митя наберет больше 10 000 очков и перейдет на следующий уровень.
а1 = 2 - количество очков, набранных за первую минуту игры,
а2 = 4 - количество очков, набранных за вторую минуту,
а3 = 8 - количество очков, набранных за третью минуту,
.......
an - количество очков, набранных за последнюю минуту.
Количество очков постоянно удваивается, значит дело мы имеем с геометрической прогрессией со знаменателем q = 2.
Каждую минуту очки суммируются, т.е. актуальна будет формула суммы первых n членов прогрессии. Формула выглядит так:
Sn=b1(q^n-1)/q-1, q не равно 1.
К тому же, эта сумма должна быть не меньше 10 000.
Подставляя известные величины в формулу, получим такое неравенство:
2(2^n-1)/2-1>10 000
2^n-1>5000
2^n>5001
Ничего не остается, как вручную подобрать n.
При n = 13 выражение 2n будет больше 5001 (2^13 = 8192). Это значит, что через 13 минут Митя наберет больше 10 000 очков и перейдет на следующий уровень.
Имеем уравнение вида
f(x)=g(x), где
f(x)=cos (πx); g(x)=x²-4x+5
Решаем графически.
f(x)= сos(πx) - ограниченная функция,её наибольшее значение равно 1.
g(x)=x²-4x+5 принимает наименьшее значение, равное 1при х=2.
х=2- единственный корень уравнения.
Проверка.
cos(2π)=2²-4·2+5
1=1- верно.
О т в е т. х=2
б)cos(cosx)=1
cos x=2πn, n∈ Z
Но так как у= сosx - ограниченная функция,
-1≤ cosx ≤1, то
-1≤ 2πn≤1, n∈ Z
Этому неравенству удовлетворяет единственное значение n=0.
Решаем уравнение
cosx=0
x=(π/2) + πk, k∈Z.
О т в е т. x=(π/2) + πk, k∈Z.