В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
vavilina000
vavilina000
04.07.2020 19:16 •  Алгебра

Если есть у кого нибудь ответьте соч по алгебре 7 класс 4 четверть 2 вариант ​

Показать ответ
Ответ:
Kirillf2006
Kirillf2006
19.05.2020 14:06
Решение:

Данное двойное неравенство равносильно системе двух квадратных неравенств:

\displaystyle \left \{ {{ 6x-9 < x^2} \atop { x^2 \leq 4x-3}} \right. ; \;\;\; \left \{ {{ x^2 - 6x + 9 0} \atop { x^2 - 4x+ 3 \leq 0}} \right.

Первое неравенство x^2 - 6x + 9 0.

Заметим, что в левой части скрывается квадрат разности (формула (a-b)^2 = a^2 - 2ab+b^2): (x-3)^2 = x^2 - 6x + 9.

Неравенство принимает следующий вид: (x-3)^2 0.

Так как квадрат числа всегда неотрицательный, то нам не подходит всего лишь один случай: (x-3)^2 = 0 и x=3.

Значит, первой неравенство эквивалентно тому, что x \ne 3.

Второе неравенство x^2 - 4x + 3 \leq 0.

Вс уравнение x^2-4x+3=0 имеет по теореме Виета (утверждающей, что x_1x_2=3 и x_1+x_2=4) корни x_1=1 и x_2=3.

Из этого следует разложение левой части на множители: (x-1)(x-3) \leq 0.

Метод интервалов подсказывает решение x \in [ 1; 3 ].

     + + +                 - - -                    + + +    

_________[ \; 1 \; ]_________[ \; 3 \; ]_________

                     \\\\\\\\\\\\\\\\\\\\\

Значит, второе неравенство равносильно тому, что 1 \leq x \leq 3.

Имеем значительно более простую систему неравенств:

\displaystyle \left \{ {{ x\neq 3} \atop {1 \leq x \leq 3}} \right.

Вполне понятно, что ее решением является 1 \leq x < 3 (как пересечения двух промежутков).

Или же { x \in [1 ; 3)}.

Задача решена!

ответ:

\Large \boxed { \bf x \in \Big [ \; 1 ; \; 3 \; \Big )}

0,0(0 оценок)
Ответ:
Alilan1
Alilan1
26.05.2020 20:12

Объяснение:

1) Общий член арифметической прогрессии an = a1 + d (n - 1).

a1 = - 14;

a2 = -11 = - 14 + d;

d = 3;

a23 = - 14 + 3 * 22 = 52.

Найдём сумму первых 23 членов этой арифметической прогрессии:

S23 = 23 (a1 + a23) / 2 = 23 * 19 = 437.

2) Найдём одиннадцатый член этой арифметической прогрессии:

a1 = 17,2;

a11 = 17,2 - 0,2 * 10 = 15,2;

Сумма одиннадцати членов равна:

S11 = 11 * (17,2 + 15,2)/2 = 178,2.

3) Найдём двадцать второй член этой арифметической прогрессии:

a1 = 6;

a10 = 12,3 = 6 +9 d;

d = 0,7;

a20 = 6 + 0,7 * 19 = 19,3.

Найдём сумму 22 членов этой арифметической прогрессии:

S22 = 22 * (6 + 19,3)/2 = 278,3.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота