Если график функции y=7x2 отобразить симметрично оси x и выполнить параллельный перенос на 6 единиц вверх, то в результате получится график функции.. 1) y= 7x2-6
Менеджмент как направление подразумевает организацию рабочего процесса на всех его этапах или отдельных отрезках. Чем выше профессионализм работника и длиннее перечень навыков, тем шире могут быть его полномочия, больше зарплата и вероятность карьерного роста.
Функции и должностные обязанности управленцев
Чтобы понять, что это за профессия – представитель сферы менеджмента, рекомендуется изучить перечень требований, которые предъявляются к управленцу. Не так важно, про стратегический, административный или производственный менеджмент идет речь, работник обязан распределять функции между сотрудниками, предоставлять им алгоритмы выполнения задач и контролировать все процессы на предприятии.
Функции и должностные обязанности управленцев
Чтобы понять, что это за профессия – представитель сферы менеджмента, рекомендуется изучить перечень требований, которые предъявляются к управленцу. Не так важно, про стратегический, административный или производственный менеджмент идет речь, работник обязан распределять функции между сотрудниками, предоставлять им алгоритмы выполнения задач и контролировать все процессы на предприятии.
Объяснение:
Рациональным называется число, которое можно записать простой дробью: q / s, где q - целое, s - натуральное.
Разность рациональных чисел - это рациональное число.
Доказательство:
k/m - n/p = (kp - mn) / mp = q / s,
где q = kp - mn (целое), s = mp (натуральное)
a^2 и b^2 - рациональные числа.
Значит, их разность также является рациональным числом.
Разложим разность квадратов:
a^2 - b^2 = (a - b)(a + b)
Отсюда a + b = (a^2 - b^2) / (a - b)
Это частное рациональных чисел.
Выясним, является ли рациональным частное рациональных чисел.
(k/m) / (n/p) = kp / mn = q / s,
где q = kp (целое), s = mn (натуральное)
при условии, что n/p (делитель) не равен 0.
Да: частное рациональных чисел также рационально.
a + b = (a^2 - b^2) / (a - b) - это частное, в котором делитель (a - b) не равен 0 (так как a не равно b).
Следовательно, a + b - рациональное число, ч. т. д.