Y'= (x^2-9x+9)' * e^(x-7) + (x^2-9x+9) * (e^(x-7))'= =(2x-9)*e^(x-7) + (x^2-9x+9)* e^(x-7)=e^(x-7)*(2x-9+x^2-9x+9)= =e^(x-7)*(x^2 -7x)=e^(x-7)*(x-7)*x. Приравняем в нулю. так как е в любой степени больше нуля, y'=0 при x=0 или x=7. отметим на координатной прямой эти точки 0 и 7 , проставим знаки + - + справа налево. Видно, что в точке х=0 производная меняет знак с + на минус, это точка максимума, в точке х=7 знак меняет с минуса не плюс, это точка минимума. Как раз это точка находится в заданном интервале. Подставим х=7 в исходную функцию у наим.=(7^2-9*7+9)*e^0=-5*1=-5
Село 115 км Город
> 15 км/ч t - ? 70 км/ч <
.
Пусть х ч ехал до встречи мотоциклист, тогда (х + 2) ч - ехал до встречи велосипедист. Уравнение:
70 · х + 15 · (х + 2) = 115
70х + 15х + 30 = 115
85х = 115 - 30
85х = 85
х = 85 : 85
х = 1 (ч) - время движения мотоциклиста
1 + 2 = 3 (ч) - время движения велосипедиста
.
1) 15 · 2 = 30 км - проедет велосипедист до выезда мотоциклиста;
2) 115 - 30 = 85 км - оставшийся путь, который они проедут вместе;
3) 15 + 70 = 85 км/ч - скорость сближения;
4) 85 : 85 = 1 ч - время движения до встречи после выезда мотоциклиста;
5) 2 + 1 = 3 ч - время движения велосипедиста.
ответ: 3 ч ехал велосипедист и 1 ч ехал мотоциклист.