Странная задача. Пусть х - производительность 1-го экскаватора; у - 2-го экскаватора; 1 - целый котлован. Работая одновременно они выроют за 11 часов и ещё 2/3 часа:
Второе уравнение, когда 1-й вырыл 1/4 котлована, а 2-й - 3/4 котлована:
Из второго уравнения выражаем икс:
И подставляем в первое уравнение:
Вычисляем икс:
Отсюда два решения: 1) время рытья котлована одним экскаватором, или первым, или вторым:
2)
В обоих вариантах время работы любого экскаватора не меньше 8 часов. Где ошибка? Проверка показывает, что оба варианта удовлетворяют условию задачи.
равним два треугольника. Запишем теорему Пифагора для них, так как углы неизвестны.
Приравниваем правые части:
Подставим эту найденную нами скорость в любое из выражений, составленных по теореме Пифагора:
Определяем углы из треугольников перемещений:
Тогда
Косинусы углов:
Тогда
Или
Синус принимает одно и то же значение при двух разных углах, дополняющих друг друга до .
Тогда
Тогда один из углов
Это следует из треугольника перемещений:
Заметим важный факт: биссектриса угла между векторами начальных скоростей камней будет наклонена под углом к горизонтали.
Обозначим угол между вектором и биссектрисой . Тогда
ответ: , , , .
Задача 14. Из одной точки, расположенной достаточно высоко над поверхностью земли, вылетают две частицы с горизонтальными противоположно направленными скоростями и . Через какое время угол между направлениями скоростей этих частиц станет равным ? На каком расстоянии друг от друга они при этом будут находиться? Сопротивлением воздуха пренебречь.
Пусть х - производительность 1-го экскаватора; у - 2-го экскаватора; 1 - целый котлован.
Работая одновременно они выроют за 11 часов и ещё 2/3 часа:
Второе уравнение, когда 1-й вырыл 1/4 котлована, а 2-й - 3/4 котлована:
Из второго уравнения выражаем икс:
И подставляем в первое уравнение:
Вычисляем икс:
Отсюда два решения:
1) время рытья котлована одним экскаватором, или первым, или вторым:
2)
В обоих вариантах время работы любого экскаватора не меньше 8 часов. Где ошибка? Проверка показывает, что оба варианта удовлетворяют условию задачи.
равним два треугольника. Запишем теорему Пифагора для них, так как углы неизвестны.
Приравниваем правые части:
Подставим эту найденную нами скорость в любое из выражений, составленных по теореме Пифагора:
Определяем углы из треугольников перемещений:
Тогда
Косинусы углов:
Тогда
Или
Синус принимает одно и то же значение при двух разных углах, дополняющих друг друга до .
Тогда
Тогда один из углов
Это следует из треугольника перемещений:
Заметим важный факт: биссектриса угла между векторами начальных скоростей камней будет наклонена под углом к горизонтали.
Обозначим угол между вектором и биссектрисой . Тогда
ответ: , , , .
Задача 14. Из одной точки, расположенной достаточно высоко над поверхностью земли, вылетают две частицы с горизонтальными противоположно направленными скоростями и . Через какое время угол между направлениями скоростей этих частиц станет равным ? На каком расстоянии друг от друга они при этом будут находиться? Сопротивлением воздуха пренебречь.
Решим эту задачу двумя Первый