Что такое |x| ? |x|=x при x≥0 и |x|=-x при x<0 поэтому разобьем систему на 2. 1. x<0 y=-x+4 y=-5/(x-2) Решаем -x+4=-5/(x-2) x≠2 (x-2)(-x+4)=-5 -x²+4x+2x-8+5=0 -x²+6x-3=0 x²-6x+3=0 D=6²-4*3=36+12=24 √D=2√6 x₁=(6-2√6)/2=3-√6 - отбрасываем, так как по условию x<0 x₂=(6+4√3)/2=3+2√3 - отбрасываем, так как по условию x<0 x=3-2√3 y=-3+2√4+4=1+2√3 2. x≥0 y=x+4 y=-5/(x-2) Решаем x+4=-5/(x-2) x≠2 (x-2)(x+4)=-5 x²+4x-2x-8+5=0 x²+2x-3=0 D=2²+4*3=16 √D=4 x₁=(-2-4)/2=-3 - отбрасываем, так как по условию x≥0 x₂=(-2+4)/2=1 x=1 y=1+4=5 ответ: x=1 y=5
Находим первую производную функции:
y' = (x-4)² * (2*x-2)+(x-1)² * (2*x-8)
или
y' = 2(x-4)(x-1)(2*x-5)
Приравниваем ее к нулю:
2(x-4)(x-1)(2*x-5) = 0
x₁ = 1
x₂ = 5/2
x₃ = 4
Вычисляем значения функции
f(1) = 0
f(5/2) = 81/16
f(4) = 0
ответ: fmin = 0; fmax = 81/16
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 2(x-4)²+2(x-1)²+2(2*x-8)(2*x-2)
или
y'' = 12*x ²- 60*x + 66
Вычисляем:
y''(1) = 18>0 - значит точка x = 1 точка минимума функции.
y''(4) = 18>0 - значит точка x = 4 точка минимума функции.
поэтому разобьем систему на 2.
1. x<0
y=-x+4
y=-5/(x-2)
Решаем
-x+4=-5/(x-2)
x≠2
(x-2)(-x+4)=-5
-x²+4x+2x-8+5=0
-x²+6x-3=0
x²-6x+3=0
D=6²-4*3=36+12=24
√D=2√6
x₁=(6-2√6)/2=3-√6 - отбрасываем, так как по условию x<0
x₂=(6+4√3)/2=3+2√3 - отбрасываем, так как по условию x<0
x=3-2√3 y=-3+2√4+4=1+2√3
2. x≥0
y=x+4
y=-5/(x-2)
Решаем
x+4=-5/(x-2)
x≠2
(x-2)(x+4)=-5
x²+4x-2x-8+5=0
x²+2x-3=0
D=2²+4*3=16
√D=4
x₁=(-2-4)/2=-3 - отбрасываем, так как по условию x≥0
x₂=(-2+4)/2=1
x=1 y=1+4=5
ответ: x=1 y=5