Если найдется такое u, что аf(u)<0, то квадратный трёхчлен f(x)=ax^2+bx+c имеет два различных действительных корня, причём один из корней меньше, чем u, а другой больше, чем u. Докажите.
А) если f(x) четная , то при х>0 мы зеркально отразим нашу функцию
относительно ординат
так как для чётных функций f(x)=f(-x)
б) если f(x) нечётная, то при х>0 мы сначала зеркально отразим нашу функцию относительно оси ординат , а затем полученный график снова зеркально отразим, но уже относительно оси абсцисс так как для нечётных функций f(x)= -f(-x)
в) если функция общего вида, то как она будет вести при х>0 нельзя сказать определенно, надо проводить дополнительные исследования функции при х>0
Решение.
Арифметический подход к решению.
1. 3600 · 1,485 = 5346 (т. р.) — размер вклада к концу третьего года хранения.
2. 3600 · 1,1 · 1,1 · 1,1 = 4791,6 (т. р.) — размер вклада к концу третьего года хранения, зависящего от первоначально внесенной суммы.
3. 5346 − 4791,6 = 554,4 (т. р.) составляют ежегодные дополнительно внесенные вклады, включая начисленные процентные надбавки.
4. Пусть одну часть из суммы 554,4 т. р. составляет дополнительно внесенная сумма в третий
год хранения вклада вместе с процентной надбавкой, начисленной на ту же сумму. Тогда 1,1 часть
составит размер дополнительно внесенной суммы во второй год хранения вклада с учетом процентной надбавки, начисленной дважды (два года подряд).
5. Всего 1+1,1 = 2,1 (части).
6. 554,4 : 2.1 = 264 (т.р.) — доля одной части от 554, 4 т. р. вместе с ежегодной процентной
надбавкой.
7. 264 : 1,1 = 240 (т. р.) — сумма, ежегодно добавленная к вкладу
это для примера а так сам делай
мы зеркально отразим нашу функцию
относительно ординат
так как для чётных функций f(x)=f(-x)
б) если f(x) нечётная, то при х>0
мы сначала зеркально отразим нашу функцию
относительно оси ординат , а затем полученный график снова зеркально отразим, но уже относительно оси абсцисс
так как для нечётных функций f(x)= -f(-x)
в) если функция общего вида, то как она будет вести при х>0 нельзя сказать определенно, надо проводить дополнительные исследования функции при х>0