Предположим обратное. Пусть а(ах₀²+bx₀+c) > 0 при х₁ < х₀ < х₂ где, х₁ и х₂ - нули параболы, причём x₁ < x₂. Значит x₀ < 0. Так как x₁ < x₂, то наша парабола положительна. В таком случае мы предполагаем, что положительная парабола имеет конечное количество положительных значений y и бесконечное количество отрицательных значений y. Но это невозможно, так как ветви положительной параболы в промежутках (-∞ ; x₁) U (x₂ ; +∞) находится выше оси X. Следовательно, наше предположение неверно, и неравенство а(ах₀²+bx₀+c) < 0 верно.
1) При пересечении двух прямых образуется две пары вертикальных углов, сумма которых равна 360°. Так как сумма трех углов из этих четырех равна 236°, то четвертый угол: ∠4 = 360 - (∠1 + ∠2 + ∠3) = 360 - 236 = 124°. Угол ∠2, вертикальный с углом ∠4, равен ему по величине: ∠2 = ∠4 = 124° Оставшаяся пара вертикальных углов: ∠1 = ∠3 = (360 - (∠2 + ∠4)) : 2 = (360 - 248) : 2 = 112 : 2 = 56°
ответ: 56°; 56°; 124°
2) См.рис.
Так как ∠DOC = 27°, то ∠AOD = ∠AOC - ∠DOC = 90 - 27 = 63°
Значит x₀ < 0.
Так как x₁ < x₂, то наша парабола положительна.
В таком случае мы предполагаем, что положительная парабола имеет конечное количество положительных значений y и бесконечное количество отрицательных значений y. Но это невозможно, так как ветви положительной параболы в промежутках (-∞ ; x₁) U (x₂ ; +∞) находится выше оси X.
Следовательно, наше предположение неверно, и неравенство а(ах₀²+bx₀+c) < 0 верно.
сумма которых равна 360°.
Так как сумма трех углов из этих четырех равна 236°, то четвертый угол:
∠4 = 360 - (∠1 + ∠2 + ∠3) = 360 - 236 = 124°.
Угол ∠2, вертикальный с углом ∠4, равен ему по величине:
∠2 = ∠4 = 124°
Оставшаяся пара вертикальных углов:
∠1 = ∠3 = (360 - (∠2 + ∠4)) : 2 = (360 - 248) : 2 = 112 : 2 = 56°
ответ: 56°; 56°; 124°
2) См.рис.
Так как ∠DOC = 27°, то ∠AOD = ∠AOC - ∠DOC = 90 - 27 = 63°
∠AOB = ∠AOD + ∠DOB = 63 + 90 = 153°
ответ: 153°