Если первый рабочий начнет работать на 2,5 ч позднее то каждый из них выполнит половину работы если начнут работать одновременното через 5ч.останется выполнить 55%всей работы за какое время каждый работник выполнит свою работу работая оттдельно
1) y³ - 2y² = y - 2 y³ - 2y² - y + 2 = 0 Разложим на множители и решим: ( y - 2)(y - 1)(y + 1) = 0 Произведение равно 0,когда один из множителей равен 0,значит, y - 2 = 0 y = 2 y - 1 = 0 y = 1 y + 1 = 0 y = -1 ответ: y = 2, y = 1, y = - 1.
2) (x² - 7)(x² - 7) - 4x² + 28 - 45 = 0 x⁴ - 14x² + 49 - 4x² - 17 = 0 x⁴ - 18x² + 32 = 0 Разложим на множители и решим: (x² - 16)(x² - 2) = 0 Произведение равно 0,когда один из множителей равен 0,значит, x² - 16 = 0 x² = 16 x = 4 x = - 4 x² - 2 = 0 x² = 2 x = +/- √2
y³ - 2y² - y + 2 = 0
Разложим на множители и решим:
( y - 2)(y - 1)(y + 1) = 0
Произведение равно 0,когда один из множителей равен 0,значит,
y - 2 = 0
y = 2
y - 1 = 0
y = 1
y + 1 = 0
y = -1
ответ: y = 2, y = 1, y = - 1.
2) (x² - 7)(x² - 7) - 4x² + 28 - 45 = 0
x⁴ - 14x² + 49 - 4x² - 17 = 0
x⁴ - 18x² + 32 = 0
Разложим на множители и решим:
(x² - 16)(x² - 2) = 0
Произведение равно 0,когда один из множителей равен 0,значит,
x² - 16 = 0
x² = 16
x = 4
x = - 4
x² - 2 = 0
x² = 2
x = +/- √2
ответ: x = 4, x = - 4, x = √2, x = - √2.
Объяснение: 4. (sin(β-π)×sin(2π-β)×cos(β-2π))/
/(sin(π/2 -β)×ctg(π-β)×ctg(β+ 3π/2)) =
=(sin(-(π-β))×sin(-β+2π)×cosβ)/(cosβ×(-ctgβ)×(-tgβ))=
=(-sinβ×(-sinβ)×cosβ)/(cosβ×ctgβ×tgβ)=(sin²β×cosβ)/(cosβ×1) =sin²β ;
5.
1+sinx×cosx×tgx = 1+ (sinx×cosx×sinx)/cosx= 1+ sin²x =1 + sin²(π/3)=
=1+(√3/2)² = 1+ 3/4 = (4+3)/4 = 7/4.
Здесь sin(π/3) = √3/2.
6. tgα=sinα/cosα , cosα=4/5,
Найдем sinα: sin²α= 1 - cos²α = 1 - (4/5)² = 1- (16/25) = (25-16)/25 =
= 9/25;
sinα = - √(9/25) = -3/5; sinα отрицательный потому что (3π/2)<α<2π ;
tgα= sinα/cosα = -(3/5)/(4/5) = -(3×5)/(5×4) = - 3/4.