В задаче мы имеем дело с упорядоченной выборкой без повторений. Каждая буква выбирается последовательно, это значит, что буква К выбирается из четырех возможных (О Т К Р ) и вероятность выбора первой буквы К равна
Р(к) = 1/4.
Буква Р выбирается из оставшихся трех (О Т Р ) и вероятность выбора второй буквы Р равна Р(р) = 1/3.
Далее выбираем букву О из оставшихся двух (О Т) и вероятность выбора третьей буквы О равна Р(о) = 1/2.
Тогда для буквы Т останется вероятность выбора Р(т) = 1.
Таким образом, вероятность искомого события равна произведению вероятностей выбора каждой отдельной буквы:
Ть опервый использование свойств арифметической прогрессии) Имеем конечную арифметическую прогрессию с первым членом -111, разностью арифметической прогрессии 1 (разница между двумя последовательными целыми числами) и суммой 339, нужно найти последний член данной прогрессии
- не подходит, количество членов прогрессии не может быть отрицательным
ответ: 114
второй на смекалку) (так как слагаемые последовательные целые числа, и меньшее из них отрицательное, а сумма положительна, то последнее из них тоже положительное, иначе они б в сумме дали отрицательное число как сумму отрицательных числе, а не положительное)
далее -111+(-110)+.+0+1+2+...+110+111+112+...+х= (-111+111)+(-110+110)+(-99+99)+(-1+1)+0+112+113+114+.. + х= 0+0+0+....+0+0+112+113+114+..+х =112+113+..+х т.е каждому отрицательному найдется в "противовес" положительное, которое в сумме вместе с ним даст 0, и фактически наша сумма равна 112+113+...+х (*) так как наименьшее из слагаемых (*) трицифровое ,и наша сумма трицифровое число, то мы последовательно сравнивая суммы , найдем его очень быстро 112=112 112+113=225 - меньше 112+113+114=339 -- совпало значит искомое число х равно 114 ответ: 114
В задаче мы имеем дело с упорядоченной выборкой без повторений. Каждая буква выбирается последовательно, это значит, что буква К выбирается из четырех возможных (О Т К Р ) и вероятность выбора первой буквы К равна
Р(к) = 1/4.
Буква Р выбирается из оставшихся трех (О Т Р ) и вероятность выбора второй буквы Р равна Р(р) = 1/3.
Далее выбираем букву О из оставшихся двух (О Т) и вероятность выбора третьей буквы О равна Р(о) = 1/2.
Тогда для буквы Т останется вероятность выбора Р(т) = 1.
Таким образом, вероятность искомого события равна произведению вероятностей выбора каждой отдельной буквы:
Р = Р(к)*Р(р)*Р(о)*Р(т) = 1/4 * 1/3 * 1/2 * 1 = 1/24
ОТВЕТ: 1/24.
Имеем конечную арифметическую прогрессию с первым членом -111, разностью арифметической прогрессии 1 (разница между двумя последовательными целыми числами) и суммой 339, нужно найти последний член данной прогрессии
- не подходит, количество членов прогрессии не может быть отрицательным
ответ: 114
второй на смекалку)
(так как слагаемые последовательные целые числа, и меньшее из них отрицательное, а сумма положительна, то последнее из них тоже положительное, иначе они б в сумме дали отрицательное число как сумму отрицательных числе, а не положительное)
далее -111+(-110)+.+0+1+2+...+110+111+112+...+х=
(-111+111)+(-110+110)+(-99+99)+(-1+1)+0+112+113+114+.. + х=
0+0+0+....+0+0+112+113+114+..+х
=112+113+..+х
т.е каждому отрицательному найдется в "противовес" положительное, которое в сумме вместе с ним даст 0,
и фактически наша сумма равна 112+113+...+х (*)
так как наименьшее из слагаемых (*) трицифровое ,и наша сумма трицифровое число, то мы последовательно сравнивая суммы
, найдем его очень быстро
112=112
112+113=225 - меньше
112+113+114=339 -- совпало
значит искомое число х равно 114
ответ: 114