Если в ответе десятичная дробь, то запишите её через запятую. Если в ответе обыкновенная дробь, то запишите её в несократимом виде через черту /. Если в ответе смешанная дробь, то запишите целую часть через пробел от дробной: -5 1/2
1. x - 3y = -2
2x + 3y = 14
x =
y =
2. 5x + y = 3
-3x - 4y = 5
x =
y =
заметим, что
I t I² =t², ⇒ (4*x-7)^2= Ι (4*x-7) Ι² ⇒ пусть Ι (4*x-7) Ι=y ⇔
y²=y ⇔y(y-1)=0 ⇔ 1) y=0 2) y-1=0 ⇒ y=1 ⇒ Ι (4*x-7) Ι=1
1) y=0 ⇒ Ι (4*x-7) Ι=0 ⇒4*x-7=0 ⇒x=7/4
проверка x=7/4
(4*x-7)^2 = Ι (4*x-7) Ι (4*(7/4)-7)^2 = Ι (4*(7/4)-7) Ι 0=0 верно
2) Ι (4*x-7) Ι=1 ⇔
2.1) 4*x-7=1 ⇔ x=2
проверка x=2 (4*2-7)^2 = Ι (4*2-7) Ι 1=1 верно
2.2) 4*x-7=-1 ⇔ x=6/4 x=3/2
проверка x=3/2 (4*(3/2)-7)^2 = Ι (4*(3/2)-7) Ι 1=1 верно
ответ: x=7/4, x=2, x=3/2 .
2.
Ι (3x^2-3x-5) Ι=10 ⇔
1) (3x^2-3x-5) =10 2) (3x^2-3x-5) =-10
1) (3x^2-3x-15) =0 D=9+4·3·15=9(1+20)>0
x1=(3-3√21)/6 =(1-√21)/2 x2=(1+√21)/2
2) (3x^2-3x+5) =0 D=9-4·3·5=<0 нет решений
ответ:
x1=(1-√21)/2 x2=(1+√21)/2
х - 2у = 4
у = (х - 4) : 2
у = х - 2.
Теперь ниже составляешь таблицу, где в названиях строк указываешь "х" и "у" и показываешь зависимость х от у: вписав в строку "х" несколько (2-3, не больше) значений (желательно брать одно отрицательное и одно положительное, а также нуль) по выведенной ранее формуле находишь у. Выглядеть это будет примерно так:
х 2 -2 0
у -1 -3 -2
Теперь находишь на координатной плоскости точки с заданными координатами: по оси абсцисс лежит х, по оси ординат - найденный у. Соединив полученные точки, и получишь график этой функции. Примечание: это должен быть не отрезок, а именно прямая, т.е. проходить она должна по всей координатной плоскости.