в учебник загляни ТЕОРЕМЫ посмотри и узнаешь всё что надо!1Пусть при пересечении прямых а и с секущей АВ накрест лежащие углы 1 и 2 равны. Если углы 1 и 2 прямые, то прямые а и с перпендикулярны к прямой АВ и следовательно параллельны. Доп. Построен. Провелем перпендикуляр ОН из середины отрезка АВ к прямой а. На прямой с от точки В отложим отрезок ВН1, равный отрезку АН и проведем отрезок ОН1. Треугольники ОНА и ОН1В равны по двум сторонам и углу между ними. Поэтому угол 3=4 и 5=6. Из равенства 3=4, точки Н, Р и Н1 лежат на одной прямой, а из равенства 5=6 : угол 6 прямой. прямые а и с перпенликулярны к прямой НН1, поэтому они параллельны. :-)
3Пусть при пересечении прямых а и b секущей c сумма односторонних углов равна 180. Т.к. эти углы 3 и 4 смежные, то 3+4=180. Из этих двух равенств следует, что накрест лежащие углы 1 и 3 равны, поэтому прямые параллельны.
4те, которые не требуют доказательств. пример: параллельные линии не пересекаются
или
АКСИОМА – принцип или положение, принимаемое без доказательств за истинное.
Найдем все возможные комбинации цифр a, b и c, такие, что S = a + b + c = 21.
Если одна из цифр числа меньше 2, то и S < 2 + 9 + 9 = 21, что не подходит по условию. Таким образом, все цифры числа должны быть больше 2.
Последовательно рассмотрев случаи для семи возможных значений a: a = 3,4,5,6,7,8,9, находим соответствующие им b и c.
С точностью до перестановки цифр, возможных "уникальных" комбинаций всего 7: (3,9,9), (4,8,9), (5,7,9), (5,8,8), (6,6,9), (6,7,8) и (7,7,7).
Комбинации, полученные перестановкой цифр в каждой из этих 7-и комбинаций, представляют различные между собой числа, и также нам подходят. Проделав всевозможные перестановки цифр в каждой тройке, мы найдем все различные n = 28 чисел.
Общее количество трехзначных чисел (т.е. чисел 100, 101, 102, 103, ..., 999), как легко подсчитать, будет N = 999 - 100 + 1 = 900. Откуда и получим искомую вероятность p = 28/900 = 7/225 = 0,03(1).
в учебник загляни ТЕОРЕМЫ посмотри и узнаешь всё что надо!1Пусть при пересечении прямых а и с секущей АВ накрест лежащие углы 1 и 2 равны. Если углы 1 и 2 прямые, то прямые а и с перпендикулярны к прямой АВ и следовательно параллельны. Доп. Построен. Провелем перпендикуляр ОН из середины отрезка АВ к прямой а. На прямой с от точки В отложим отрезок ВН1, равный отрезку АН и проведем отрезок ОН1. Треугольники ОНА и ОН1В равны по двум сторонам и углу между ними. Поэтому угол 3=4 и 5=6. Из равенства 3=4, точки Н, Р и Н1 лежат на одной прямой, а из равенства 5=6 : угол 6 прямой. прямые а и с перпенликулярны к прямой НН1, поэтому они параллельны. :-)
3Пусть при пересечении прямых а и b секущей c сумма односторонних углов равна 180. Т.к. эти углы 3 и 4 смежные, то 3+4=180. Из этих двух равенств следует, что накрест лежащие углы 1 и 3 равны, поэтому прямые параллельны.
4те, которые не требуют доказательств.
пример: параллельные линии не пересекаются
или
АКСИОМА – принцип или положение, принимаемое без доказательств за истинное.
вследущий раз в учебник смотри ВНИМАТЕЛЬНО
Пусть abc - искомое число.
Найдем все возможные комбинации цифр a, b и c, такие, что S = a + b + c = 21.
Если одна из цифр числа меньше 2, то и S < 2 + 9 + 9 = 21, что не подходит по условию. Таким образом, все цифры числа должны быть больше 2.
Последовательно рассмотрев случаи для семи возможных значений a: a = 3,4,5,6,7,8,9, находим соответствующие им b и c.
С точностью до перестановки цифр, возможных "уникальных" комбинаций всего 7: (3,9,9), (4,8,9), (5,7,9), (5,8,8), (6,6,9), (6,7,8) и (7,7,7).
Комбинации, полученные перестановкой цифр в каждой из этих 7-и комбинаций, представляют различные между собой числа, и также нам подходят. Проделав всевозможные перестановки цифр в каждой тройке, мы найдем все различные n = 28 чисел.
Общее количество трехзначных чисел (т.е. чисел 100, 101, 102, 103, ..., 999), как легко подсчитать, будет N = 999 - 100 + 1 = 900. Откуда и получим искомую вероятность p = 28/900 = 7/225 = 0,03(1).