(1/6)^x ≥ (1/36)^(2x+1)
(1/6)^x ≥ (1/6)^2•(2x+1)
(1/6)^x ≥ (1/6)^(4x+2).
Так как 0<1/6<1, то
х ≤ 4х + 2
-3х ≤ 2
х ≥ - 2/3
х∈ [- 2/3; +∞)
Наименьшее целое решение неравенства - число 0.
Так как вопрос сформулирован, видимо, не полностью, выбрать нужный вариант нет возможности.
Посмотрите, решения совпадают. И если значение Хо=0 подставить в указанное вами выражение Хо(3Хо-1), то будет 0. В списке такого ответа нет.
(1/6)^x ≥ (1/36)^(2x+1)
(1/6)^x ≥ (1/6)^2•(2x+1)
(1/6)^x ≥ (1/6)^(4x+2).
Так как 0<1/6<1, то
х ≤ 4х + 2
-3х ≤ 2
х ≥ - 2/3
х∈ [- 2/3; +∞)
Наименьшее целое решение неравенства - число 0.
Так как вопрос сформулирован, видимо, не полностью, выбрать нужный вариант нет возможности.
Посмотрите, решения совпадают. И если значение Хо=0 подставить в указанное вами выражение Хо(3Хо-1), то будет 0. В списке такого ответа нет.