Есть 15 заданий по теме «Сочетания» и 7 заданий по теме «Размещения». Каким количеством может выбрать задания для трех человек, если брать задания только по одной теме?
1. Если угловой коэффициент к положителен, линейная функция возрастает. если отрицателен, то убывает. в 1) к=2>0 ; во 2) k=4>0, значит, обе функции возрастают.
второй Используя свойства верных числовых неравенств, докажем, что возрастают функции
1) у = 9 + 2 х
Пусть х₁>х₂, у₁ = 9 + 2 х₁; у₂ = 9 + 2 х₂; тогда 2х₁>2х₂, т.к. умножали на положительное одно и то же число 2, 9+2х₁>9+2х₂, т.к. к обеим частям добалили одно и то же число 9, вывод у₁>у₂, доказано.
2) у = - 8 + 4х
аналогично
Пусть х₁>х₂, у₁ = -8+4х₁; у₂ = -8+4х₂; тогда 4х₁>4х₂, т.к. умножали на положительное одно и то же число 4; -8+4х₁>-8+4х₂, т.к. к обеим частям добалили одно и то же число -8, вывод у₁>у₂, доказано.
2. 1) свои наибольшее и наименьшее значения линейная функция достигает на концах отрезка. т.е. наименьшее равно у(-2)= 1.5-2*6=
-10.5; наибольшее у(1)=1.5+6=7.5
2) квадратичная функция у(7)=11-49=-38-наименьшее значение на указанном отрезке.
1) (18a-3a²)/(8a²-48a)=3a(6-a)/8a(a-6)=3a(-1)(a-6)/8a(a-6)=-3/8
2) (8p-40)/(15-3p)=8(p-5)/3(5-p)=8(-1)(5-p)/3(5-p)=-8/3
3) (4-x²)/(10-5x)=(2-x)(2+x)/5(2-x)=(2+x)/5=2/5+x/5=0.4+0.2x
4) (3x+6y)²/(5x+10y)=9(x+2y)²/5(x+2y)=9(x+2y)/5=1.8(x+2y)=1.8x+3.6y
5) (ax+bx-ay-by)/(bx-by)=(x(a+b)-y(a+b))/b(x-y)=(a+b)(x-y)/b(x-y)=(a+b)/b=a/b+1
6) (a²-6a+9)/(27-a³)=(a-3)²/(3-a)(9+3a+a²)=(a-3)²/(-1)(a-3)(9+3a+a²)= =(3-a)/(9+3a+a²)
7) (2a-2b)²/(a-b)=4(a-b)²/(a-b)=4(a-b)=4a-4b
8) (4c+12d)²/(c+3d)=16(c+3d)²/(c+3d)=16(c+3d)=16c+48d
9) (4x²-y²)/(6x-3y)²=(2x-3y)(2x+3y)/9(2x-y)²=(2x+y)/9(2x-y)
10) (ab-3b-2a+6)/(15-5a)=(b(a-3)-2(a-3))/5(3-a)=(a-3)(b-2)/5(3-a)= =(a-3)(b-2)/5(-1)(a-3)=(2-b)/5
Объяснение:
1. Если угловой коэффициент к положителен, линейная функция возрастает. если отрицателен, то убывает. в 1) к=2>0 ; во 2) k=4>0, значит, обе функции возрастают.
второй Используя свойства верных числовых неравенств, докажем, что возрастают функции
1) у = 9 + 2 х
Пусть х₁>х₂, у₁ = 9 + 2 х₁; у₂ = 9 + 2 х₂; тогда 2х₁>2х₂, т.к. умножали на положительное одно и то же число 2, 9+2х₁>9+2х₂, т.к. к обеим частям добалили одно и то же число 9, вывод у₁>у₂, доказано.
2) у = - 8 + 4х
аналогично
Пусть х₁>х₂, у₁ = -8+4х₁; у₂ = -8+4х₂; тогда 4х₁>4х₂, т.к. умножали на положительное одно и то же число 4; -8+4х₁>-8+4х₂, т.к. к обеим частям добалили одно и то же число -8, вывод у₁>у₂, доказано.
2. 1) свои наибольшее и наименьшее значения линейная функция достигает на концах отрезка. т.е. наименьшее равно у(-2)= 1.5-2*6=
-10.5; наибольшее у(1)=1.5+6=7.5
2) квадратичная функция у(7)=11-49=-38-наименьшее значение на указанном отрезке.