1) а) Число 54^135 , як і 54^3 , закінчується на 4.
Число 2^82 , як і 2^2, закінчується на 4
Отже, число закінчується на 4 + 4 = 8.
б) 2^100 , як і 2^4, закінчується на 6.
5) В нас система з 4 рівнять, що містить 5 невідомих, тому однозначного
розв'язку вона не має. Наприклад, якщо Х4 = 1, то Х3 = 3,6 , Х5 = 2,2 ,
Х1 = 7,4 - 3,6 - 2,2 = 1,6 , Х2 = 5,8 - 1,6 = 4,2
Якщо ж Х4 = 2, то Х3 = 2,6 , Х5 = 1,2 ,
Х1 = 7,4 - 2,6 - 1,2 = 3,6 , Х2 = 5,8 - 3,6 = 2,2
6) Якщо синові Х років, то батькові 5 * Х. Після закінчення батьком університету минуло 5 * Х - 22 роки, а синові до досягнення 22 років залишилося 22 - Х років. Отже отримуємо рівняння
5 * Х - 22 = (22 - Х) / 2
5?5 * X = 33
X = 33 / 5,5 = 6
Таким чином, сину 6 років, а батькові 5 * 6 = 30 років.
ответ:Допустим, у нас есть бесконечно малые при одном и том же {\displaystyle x\to a} x\to a величины {\displaystyle \alpha (x)} \alpha(x) и {\displaystyle \beta (x)} \beta(x) (либо, что не важно для определения, бесконечно малые последовательности).
Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=0} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=0, то {\displaystyle \beta } \beta — бесконечно малая высшего порядка малости, чем {\displaystyle \alpha } \alpha . Обозначают {\displaystyle \beta =o(\alpha )} \beta =o(\alpha ) или {\displaystyle \beta \prec \alpha } \beta\prec\alpha.
Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=\infty } \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=\infty , то {\displaystyle \beta } \beta — бесконечно малая низшего порядка малости, чем {\displaystyle \alpha } \alpha . Соответственно {\displaystyle \alpha =o(\beta )} \alpha =o(\beta ) или {\displaystyle \alpha \prec \beta } \alpha\prec\beta.
Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=c} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=c (предел конечен и не равен 0), то {\displaystyle \alpha } \alpha и {\displaystyle \beta } \beta являются бесконечно малыми величинами одного порядка малости. Это обозначается как {\displaystyle \alpha \asymp \beta } \alpha\asymp\beta или как одновременное выполнение отношений {\displaystyle \beta =O(\alpha )} \beta =O(\alpha ) и {\displaystyle \alpha =O(\beta )} \alpha =O(\beta ). Следует заметить, что в некоторых источниках можно встретить обозначение, когда одинаковость порядков записывают в виде только одного отношения «о большое», что является вольным использованием данного символа.
Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha ^{m}}}=c} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha ^{m}}}=c (предел конечен и не равен 0), то бесконечно малая величина {\displaystyle \beta } \beta имеет {\displaystyle m} m-й порядок малости относительно бесконечно малой {\displaystyle \alpha } \alpha .
Для вычисления подобных пределов удобно использовать правило Лопиталя.
1) а) Число 54^135 , як і 54^3 , закінчується на 4.
Число 2^82 , як і 2^2, закінчується на 4
Отже, число закінчується на 4 + 4 = 8.
б) 2^100 , як і 2^4, закінчується на 6.
5) В нас система з 4 рівнять, що містить 5 невідомих, тому однозначного
розв'язку вона не має. Наприклад, якщо Х4 = 1, то Х3 = 3,6 , Х5 = 2,2 ,
Х1 = 7,4 - 3,6 - 2,2 = 1,6 , Х2 = 5,8 - 1,6 = 4,2
Якщо ж Х4 = 2, то Х3 = 2,6 , Х5 = 1,2 ,
Х1 = 7,4 - 2,6 - 1,2 = 3,6 , Х2 = 5,8 - 3,6 = 2,2
6) Якщо синові Х років, то батькові 5 * Х. Після закінчення батьком університету минуло 5 * Х - 22 роки, а синові до досягнення 22 років залишилося 22 - Х років. Отже отримуємо рівняння
5 * Х - 22 = (22 - Х) / 2
5?5 * X = 33
X = 33 / 5,5 = 6
Таким чином, сину 6 років, а батькові 5 * 6 = 30 років.
ответ:Допустим, у нас есть бесконечно малые при одном и том же {\displaystyle x\to a} x\to a величины {\displaystyle \alpha (x)} \alpha(x) и {\displaystyle \beta (x)} \beta(x) (либо, что не важно для определения, бесконечно малые последовательности).
Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=0} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=0, то {\displaystyle \beta } \beta — бесконечно малая высшего порядка малости, чем {\displaystyle \alpha } \alpha . Обозначают {\displaystyle \beta =o(\alpha )} \beta =o(\alpha ) или {\displaystyle \beta \prec \alpha } \beta\prec\alpha.
Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=\infty } \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=\infty , то {\displaystyle \beta } \beta — бесконечно малая низшего порядка малости, чем {\displaystyle \alpha } \alpha . Соответственно {\displaystyle \alpha =o(\beta )} \alpha =o(\beta ) или {\displaystyle \alpha \prec \beta } \alpha\prec\beta.
Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha }}=c} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha }}=c (предел конечен и не равен 0), то {\displaystyle \alpha } \alpha и {\displaystyle \beta } \beta являются бесконечно малыми величинами одного порядка малости. Это обозначается как {\displaystyle \alpha \asymp \beta } \alpha\asymp\beta или как одновременное выполнение отношений {\displaystyle \beta =O(\alpha )} \beta =O(\alpha ) и {\displaystyle \alpha =O(\beta )} \alpha =O(\beta ). Следует заметить, что в некоторых источниках можно встретить обозначение, когда одинаковость порядков записывают в виде только одного отношения «о большое», что является вольным использованием данного символа.
Если {\displaystyle \lim \limits _{x\to a}{\dfrac {\beta }{\alpha ^{m}}}=c} \lim \limits _{{x\to a}}{\dfrac {\beta }{\alpha ^{m}}}=c (предел конечен и не равен 0), то бесконечно малая величина {\displaystyle \beta } \beta имеет {\displaystyle m} m-й порядок малости относительно бесконечно малой {\displaystyle \alpha } \alpha .
Для вычисления подобных пределов удобно использовать правило Лопиталя.