Есть прямоугольная доска размером 2×98 клеток. у марины есть банка с синей краской. она хочет покрасить 194 клеток доски так, чтобы из каждой клетки доски до любой другой можно было бы добраться, двигаясь только по синим клеткам (можно передвигаться только между клетками, имеющими общую сторону). сколько покраски доски марине не подойдут?
а)
а² - 8a + aв - 8в = (а² - 8a) + (aв - 8в) = а*(а - 8) + в*(а - 8) = (а - 8)(а + в),
или:
а² - 8a + aв - 8в = (а² + ав) - (8а + 8в) = а*(а + в) - 8*(а + в) = (а - 8)(а + в),
при а = 0,8; в = 1,2:
(0,8 - 8)(0,8 + 1,2) = -7,2 * 2 = -14,4,
б)
4c² + 5dc - 4cd - 5d² = (4c² + 5dc) - (4cd + 5d²) =
= с*(4с + 5d) - d*(4c + 5d) = (c - d)(4c + 5d),
или:
4c² + 5dc - 4cd - 5d² = (4c² - 4cd) + (5dc - 5d²) =
= 4c*(c - d) + 5d*(c- d) = (c - d)(4c + 5d),
при с = 0,6; d = - 0,4:
(0,6 + 0,4)(4*0,6 - 5*0,4) = 1 * (2,4 - 2) = 0,4
11, 13, 15, ..., 99 - двузначные натуральные нечетные
Найдем их общее количество: последовательность является арифметической прогрессией, где:
чисел
а)
Нечетное число:
Числа, удовлетворяющие условию: 11, 13, ..., 31
Их количество:
Вероятность:
б)
Условию будут удовлетворять числа: 91, 93, 95, 97, 99 (5 шт.)
Вероятность:
в)
Если х=9, то у=9
Если х=8, то у=9
Получаем числа: 99, 89 (2 шт.)
Вероятность:
г)
Если х=1, то у=1; 3
Если х=2, то у=1
Если х=3, то у=1
Числа: 11, 13, 21, 31 (4 шт.)
Вероятность: