Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
1. область определения: от минус бесконечно до плюс бесконеч. 2. ни четная, ни нечетная 3. непериодич. 4.пересечения с осями : ох : точки (9; 0) и (1; 0) с оу: точка ( 0; 9) 5. производная функции будет равна = 2х-10 приравниваем к нулю 2х-10=0 х= 5 находим промежутки монотонности: функция убывает от минус бесконечно до 5, возрастает от 5 до плюс бесконечности), точка минимума (5; -16) по этим данным уже график самостоятельно. сначала отметь точку минимума, потом точки пересечения с осями и все, строй : ) учитывай промежутки монотонности
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет:
Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой
Перестановки с повторением.
Всего у нас
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность: