Рассмотрим функцию f(x)=sqrt(3a+x), тогда уравнение примет вид
f(f(x))=x
Поскольку функция f(x) монотонно возрастает, то исходное уравнение равносильно уравнению f(x)=x
sqrt(3a+x)=x, x>=0
3a+x=x^2
x^2-x-3a=0
D=1+12a
Найдем при каких а, получившееся квадратное уравнение имеет хотя бы один неотрицательный корень. Для этого достаточно чтобы больший корень был неотрицателен.
x=(1+sqrt(1+12a))/2>=0 <=> sqrt(1+12a)>=-1
Выходит, что если получившееся квадратное уравнение имеет хотя бы одно решение, то оно будет неотрицательно.
Значит, единственный случай, который нам подходит, это когда квадратное уравнение корней не имеет.
1. Сложим системы:
2x = 6
x = 3
Из первого уравнение y=2-x = 3-2 = -1
x=3 y=-1
2. Сложим системы
9x = 18
x = 2
Из второго 4y=8-3x=8-6=2 y=2/4=0,5
x=2 y=0,5 (2; 0,5)
3. Вычтем из первого уравнения второе
4x - 4x - 7y + 5y = 30 - 90
-2y = -60
y= 30
Из первого уравнения 4x = 30 + 7y = 30 + 210 = 240 x=60
x=60 y=30 (60;30)
4. Вычтем второе из первого
3y - 5y = 66 - 22
-2y = 44
y = -22
Из первого 12x = 66 - 3y = 66 + 66 = 132 x=11
x=11 y=-22 x+y=11-22= -11
5. Сложим уравнения
y-4y = 12
-3y = 12 y=-4
Из второго 2x=8+4y=8-16=-8 x=-4
x= -4 y=-4 x/y = 1
ответ:a<-1/12
Объяснение:
Рассмотрим функцию f(x)=sqrt(3a+x), тогда уравнение примет вид
f(f(x))=x
Поскольку функция f(x) монотонно возрастает, то исходное уравнение равносильно уравнению f(x)=x
sqrt(3a+x)=x, x>=0
3a+x=x^2
x^2-x-3a=0
D=1+12a
Найдем при каких а, получившееся квадратное уравнение имеет хотя бы один неотрицательный корень. Для этого достаточно чтобы больший корень был неотрицателен.
x=(1+sqrt(1+12a))/2>=0 <=> sqrt(1+12a)>=-1
Выходит, что если получившееся квадратное уравнение имеет хотя бы одно решение, то оно будет неотрицательно.
Значит, единственный случай, который нам подходит, это когда квадратное уравнение корней не имеет.
D=1+12a<0 <=> a<-1/12