(-x^2+6x-10)(x^2-5x+6)(x-2)>0 здесь исползуется метод интервалов и разложение степеней -(x^2-6x+10)(x^2-5x+6)(x-2)>0 вынесли -1 за первую скобку (x^2-6x+10)(x^2-5x+6)(x-2)<0 изменился знак умножили левую-правую часть на -1 (x^2-6x+10) раскладываем первую скобку D=36-4*10=-4 отрицательный при x^2 стоит положительное число 1, значит это парабола ветвями вверх и не пересекающая ось ОХ / При любых значениях x выражение (x^2-6x+10)>0 так как выражение <0 значит мы это выражение не расматриваем в в решение и просто делим на него леиую и правую часть, знак не меняется , а рассматриваем следующее (x^2-5x+6)(x-2)<0 (x-2)(x-3)(x-2)<0 строим метод интервалов и получаем ответ x не равен 2 и x<3 (- ,бесконечности, 2) и (2, 3)
По теореме Виета сумма корней приведенного квадратного уравнения равна второму коэффициенту с противоположным знаком, а произведение корней = свободному члену, Значит, х1 + х2 = а-2, х1*х2=-а-3. Обе части первого равенства возведем в квадрат и вместо х1*х2 подставим -а-3. Получим уравнение -2а-6=а^ -4а+4, откуда =а^-2а+10. Рассмотрим функцию у= а^-2а+10, график - парабола, ветви вверх, наименьшее значение в вершине( х= -в/2а), отсюда а= 2/2 =1. ( Если изучили производную, то наименьшее значение функции у= а^-2а+10 найдем через производную у. У'= 2а-2, у'=0 при а=1. А=1 - точка минимума.) ответ: при а=1.
здесь исползуется метод интервалов и разложение степеней
-(x^2-6x+10)(x^2-5x+6)(x-2)>0 вынесли -1 за первую скобку
(x^2-6x+10)(x^2-5x+6)(x-2)<0 изменился знак умножили левую-правую часть на -1
(x^2-6x+10) раскладываем первую скобку D=36-4*10=-4 отрицательный при x^2 стоит положительное число 1, значит это парабола ветвями вверх и не пересекающая ось ОХ / При любых значениях x выражение (x^2-6x+10)>0 так как выражение <0 значит мы это выражение не расматриваем в в решение и просто делим на него леиую и правую часть, знак не меняется , а рассматриваем следующее
(x^2-5x+6)(x-2)<0
(x-2)(x-3)(x-2)<0
строим метод интервалов и получаем ответ x не равен 2 и x<3
(- ,бесконечности, 2) и (2, 3)
-2а-6=а^ -4а+4, откуда =а^-2а+10. Рассмотрим функцию у= а^-2а+10, график - парабола, ветви вверх, наименьшее значение в вершине( х= -в/2а), отсюда а= 2/2 =1.
( Если изучили производную, то наименьшее значение функции у= а^-2а+10 найдем через производную у. У'= 2а-2, у'=0 при а=1. А=1 - точка минимума.)
ответ: при а=1.