(это предназначено для работы в парах.)
докажите, что всякое простое число,начиная с 5, увеличенное или уменьшенное на 1,делится на 6.
1) проверьте утверждение на примерах. одному учащемуся рекомендуется взять простые числа из третьего десятка,другому - из седьмого десятка.
2) обсудите друг с другом,из чего следует справедливость данного свойства.
3) проведите доказательство.
,.
Объяснение:
1. 25х – 17 - 4х - 5 = -13х + 14 + 34х
приведем подобные слагаемые, получим: 21х - 22 = 21х + 14
перенесем х в одну сторону, числа в другую, получим: 0х = 36
при умножении на 0 любого числа получится всегда 0, тоесть равенство никогда не будет верным — корней нет
2. 10 - 4х + 3 = 9х – 2 - 6х + 9 - 7х + 6
приведем подобные слагаемые, получим: 13 - 4х = -4х + 13
перенесем х в одну сторону, числа в другую, получим: 0х = 0
при умножении любого числа на 0 всегда получится 0, тоесть равенство всегда будет верно, при любом значении х
3. возьмем ширину за х, тогда длина будет 2х, P участка = длине забора, длина забора = 6х; 6х = 120, х = 20м 2х = 40м
Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение: