ЭТО РЕШИТЬ!
1. Представьте многочлен в виде квадрата двучлена:
а2-2ав+в2.
2.Разложите на множители:
4у2-9.
3.Разложите на множители:
4а-а3.
4. Представьте в виде произведения:
3у2-6ух+3х2.
5. Разложите на множители:
в2(а-7)-2в(а-7)+а-7.
6. Разложите на множители:
а3+8в3-а2+2ав-4в2.
1) 2 целых 2/3:1,2= 2 целых 2/3:1 целая 2/10= (переводим в обыкновенную дробь) 8/3:12/10= (вторая дробь переворачивается) (8*10)/(3*12)=80/36=(сокращаем на 4) 20/9=2 целых 2/9
2) 2 целых 2/9-2= 2/9
3) 2/9*6 целых 3/4=( переводим в обыкновенную дробь) 2/9*27/4=2*27/9*4= (сокращаем 2 и 4 на 2 - остается от 2 один, от 4 два; сокращаем 27 и 9 на 9, от 27 остается 3, от 9 остается 1)= 1*3/1*2=3/2=1 целая 1/2
4) 1 целая 1/2-5,5= (переводим из десятичной в смешанную дробь)= 1 целая 1/2-5 целых 5/10=(сокращаем дробь) 1 целая 1/2-5 целых 1/2= (переводим смешанные дроби в обыкновенные) 3/2-11/2= 3-11/2=-8/2=(сокращаем на два)=-4
Решение.
Арифметический подход к решению.
1. 3600 · 1,485 = 5346 (т. р.) — размер вклада к концу третьего года хранения.
2. 3600 · 1,1 · 1,1 · 1,1 = 4791,6 (т. р.) — размер вклада к концу третьего года хранения, зависящего от первоначально внесенной суммы.
3. 5346 − 4791,6 = 554,4 (т. р.) составляют ежегодные дополнительно внесенные вклады, включая начисленные процентные надбавки.
4. Пусть одну часть из суммы 554,4 т. р. составляет дополнительно внесенная сумма в третий
год хранения вклада вместе с процентной надбавкой, начисленной на ту же сумму. Тогда 1,1 часть
составит размер дополнительно внесенной суммы во второй год хранения вклада с учетом процентной надбавки, начисленной дважды (два года подряд).
5. Всего 1+1,1 = 2,1 (части).
6. 554,4 : 2.1 = 264 (т.р.) — доля одной части от 554, 4 т. р. вместе с ежегодной процентной
надбавкой.
7. 264 : 1,1 = 240 (т. р.) — сумма, ежегодно добавленная к вкладу
это для примера а так сам делай