Проверенные ответы содержат информацию, которая заслуживает доверия. На «Знаниях» вы найдёте миллионы решений, отмеченных самими пользователями как лучшие, но только проверка ответа нашими экспертами даёт гарантию его правильности.
Начнем с того что такое дробно-рациональное уравнение:
Определение: Дробно рациональное уравнение - рациональное (без знака корня) уравнение, в котором левая или правая части являются дробными выражениями.
НАПРИМЕР:
МЫ видим что уравнение содержит дробные выражения где переменная х и в Числителе и в Знаменателе дроби.
Теперь попробуем его решить
Для этого приведем дроби к общему знаменателю
Далее выполним сложение дробей
А теперь рассуждаем так: Дроби равны если РАВНЫ и Числители и Знаменатели.
И мы приравниваем числители и решаем уравнение.
Находим корни этого уравнения х=0 или х= -1
И радостно пишем ответ... НО
А куда же мы дели ЗНАМЕНАТЕЛЬ?
Вот так его выкинули? Вот в этом и ошибка.
Мы ОБЯЗАНЫ проверить чтобы эти корни не обращали наш знаменатель в НОЛЬ. Ведь на НОЛЬ делить нельзя!!!
Тут как раз и получился посторонний корень х= -1
Как избежать такой ошибки:
1. Убедиться точно ли перед тобой рациональное уравнение (т.е. оно не содержит корней);
2. Определить ОДЗ (т.е. посмотреть при каких х знаменатель равен НУЛЮ);
3. Найти общий знаменатель дробей и умножить на него обе части уравнения;
4. При равных знаменателях приравнять числители и решить получившееся целое уравнение;
5. Исключить из его корней те, которые обращают в ноль знаменатель дробей.
Рассмотрим левую часть: 4sina*sin(п/3+a)*sin(п/3-a) = 4sina*(sin(п/3)*cos(a) + cos(п/3)*sin(a)) * (sin(п/3)*cos(a) - cos(п/3)*sin(a)) = (в двух последних скобках - это произведение суммы и разности двух чисел: (a-b)(a+b)=a²-b², воспользуемся этой формулой и раскроем скобки) = 4sina*( sin² (п/3)*cos² (a) - cos² (п/3) * sin² (a) ) =
4sina*( 1/4*cos² (a) – 3/4 * sin² (a) ) = (сокращаем на 4, и воспользуемся тем что соs² = 1-sin² ) = sina*( 1 – sin² (a) - 3*sin² (a)) = sina*( 1 –4*sin² (a))
HoteМодератор
Это Проверенный ответ
×
Проверенные ответы содержат информацию, которая заслуживает доверия. На «Знаниях» вы найдёте миллионы решений, отмеченных самими пользователями как лучшие, но только проверка ответа нашими экспертами даёт гарантию его правильности.
Начнем с того что такое дробно-рациональное уравнение:
Определение: Дробно рациональное уравнение - рациональное (без знака корня) уравнение, в котором левая или правая части являются дробными выражениями.
НАПРИМЕР:
МЫ видим что уравнение содержит дробные выражения где переменная х и в Числителе и в Знаменателе дроби.
Теперь попробуем его решить
Для этого приведем дроби к общему знаменателю
Далее выполним сложение дробей
А теперь рассуждаем так: Дроби равны если РАВНЫ и Числители и Знаменатели.
И мы приравниваем числители и решаем уравнение.
Находим корни этого уравнения х=0 или х= -1
И радостно пишем ответ... НО
А куда же мы дели ЗНАМЕНАТЕЛЬ?
Вот так его выкинули? Вот в этом и ошибка.
Мы ОБЯЗАНЫ проверить чтобы эти корни не обращали наш знаменатель в НОЛЬ. Ведь на НОЛЬ делить нельзя!!!
Тут как раз и получился посторонний корень х= -1
Как избежать такой ошибки:
1. Убедиться точно ли перед тобой рациональное уравнение (т.е. оно не содержит корней);
2. Определить ОДЗ (т.е. посмотреть при каких х знаменатель равен НУЛЮ);
3. Найти общий знаменатель дробей и умножить на него обе части уравнения;
4. При равных знаменателях приравнять числители и решить получившееся целое уравнение;
5. Исключить из его корней те, которые обращают в ноль знаменатель дробей.
Подробнее - на -
Объяснение:
4sina*sin(п/3+a)*sin(п/3-a)=sin3a
Рассмотрим левую часть: 4sina*sin(п/3+a)*sin(п/3-a) = 4sina*(sin(п/3)*cos(a) + cos(п/3)*sin(a)) * (sin(п/3)*cos(a) - cos(п/3)*sin(a)) = (в двух последних скобках - это произведение суммы и разности двух чисел: (a-b)(a+b)=a²-b², воспользуемся этой формулой и раскроем скобки) = 4sina*( sin² (п/3)*cos² (a) - cos² (п/3) * sin² (a) ) =
4sina*( 1/4*cos² (a) – 3/4 * sin² (a) ) = (сокращаем на 4, и воспользуемся тем что соs² = 1-sin² ) = sina*( 1 – sin² (a) - 3*sin² (a)) = sina*( 1 –4*sin² (a))
Рассмотрим правую часть: sin3a= sina – 4*sin³ (a)) = sina*( 1 –4*sin² (a))
Следовательно, выражения в левой и правой частях тождественно равны.