Сразу заметим, что f(x) - непрерывна и не имеет асимптот. Найдем ее промежутки возрастания и убывания. f'(x)=4/3*(3-x)^3+4x/3*3(3-x)^2*(-1)=(3-x)^2*(4/3*(3-x)-4x/3*3)=(x-3)^2*(4-16/3*x)=-16/3*(x-3)^2*(x-3/4) Нули производной: x=3, x=3/4. f'(x) + - - 3/4 3 >x f(x) возрастает убывает убывает Отсюда следует, что максимум функции достигается при x=3/4. При пересечении функции прямой y=m будет более одной точки в том случае, когда прямая y=m лежит ниже максимума f(x) - так она будет пересекать f(x) ровно в двух точках. Отсюда m < f(3/4) f(3/4)=4/3*3/4*(3-3/4)^3=(9/4)^3=729/64 m<729/64
f'(x)=4/3*(3-x)^3+4x/3*3(3-x)^2*(-1)=(3-x)^2*(4/3*(3-x)-4x/3*3)=(x-3)^2*(4-16/3*x)=-16/3*(x-3)^2*(x-3/4)
Нули производной: x=3, x=3/4.
f'(x) + - -
3/4 3 >x
f(x) возрастает убывает убывает
Отсюда следует, что максимум функции достигается при x=3/4.
При пересечении функции прямой y=m будет более одной точки в том случае, когда прямая y=m лежит ниже максимума f(x) - так она будет пересекать f(x) ровно в двух точках. Отсюда m < f(3/4)
f(3/4)=4/3*3/4*(3-3/4)^3=(9/4)^3=729/64
m<729/64
1) За 3000, внесённые в первый год, начисления составят 10(лет) * 5(%год.) = 50% от 3000, т.е. 1500, плюс сами 3000 итого 1500 + 3000 = 4500 р.
2) За 3000, внесённые во второй год, начисления составят 9(лет) * 5(%год.) = 45% от 3000, т.е 1350, плюс сами 3000 итого 1350 + 3000 = 4350 р.
Так, за 3000, вносимые за каждый следующий год, начисления будут составлять на 150 р. меньше, чем за 3000, внесённые в предыдущем году.
3-й год - 4200 р.
4-й год - 4050 р.
5-й год - 3900 р.
6-й год - 3750 р.
7-й год - 3600 р.
8-й год - 3450 р.
9-й год - 3300 р.
10-й год - 3150 р.
Сумма начислений и самих внесённых денег за 10 лет будет равна 4500 + 4350 + 4200 + 4050 + 3900 + 3750 + 3600 + 3450 + 3300 + 3150 = 38 250 р.
ответ: 38 250 р.