1) значение функции, если значение аргумента равно 10;
2) значение аргумента, при котором значение функции равно −7;
3) проходит ли график функции через точку В (9; -35).
1)y = −4x + 1
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -1 0 1
у 5 1 -3
а)Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
х=10
у= -4*10+1= -39 при х=10 у= -39
б)Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
у= -7
-7= -4х+1
4х=1+7
4х=8
х=2 у= -7 при х=2
в)Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
Объяснение:
Функция задана формулой y = −4x + 1. Определите:
1) значение функции, если значение аргумента равно 10;
2) значение аргумента, при котором значение функции равно −7;
3) проходит ли график функции через точку В (9; -35).
1)y = −4x + 1
Построить график. График линейной функции, прямая линия. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.
Таблица:
х -1 0 1
у 5 1 -3
а)Чтобы найти значение у, нужно известное значение х подставить в уравнение и вычислить у:
х=10
у= -4*10+1= -39 при х=10 у= -39
б)Чтобы найти значение х, нужно известное значение у подставить в уравнение и вычислить х:
у= -7
-7= -4х+1
4х=1+7
4х=8
х=2 у= -7 при х=2
в)Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение, если левая часть будет равна правой, значит, точка принадлежит графику и наоборот.
В (9; -35)
y = −4x + 1
-35= -4*9+1
-35= -36+1
-35= -35, проходит.
Для начала вспомним т. Виетта
для уравнения вида x²+px+q=0
выпоняется : x₁+x₂= -p; x₁*x₂=q
теперь решение:
1) x²-13x+q=0
x₁=12.5
x₁+x₂= -(-13)=13
12.5+x₂=13
x₂=0.5
x₁*x₂=12.5*0.5=6.25= q
тогда уравнение будет x²-13x+6.25=0
2) 10x²-33x+c=0
приведем его к стандартному виду
x²-(33/10)x+(c/10)=0
x²-3.3x+(c/10)=0
x₁=5.3 тогда 5.3+x₂=3.3; отсюда x₂= -2
c/10=5.3*(-2)=-10.6; Значит с= -106
Уравнение будет иметь вид 10x²-33x-106=0
3) x²+2x+q=0
x₁²-x₂²=12
(x₁-x₂)(x₁+x₂)=12
(x₁-x₂)*(-2)=12
x₁-x₂= -6
x₁=x₂-6
Теперь найдем корни
x₁+x₂=x₂-6+x₂=-2
2x₂=4
x₂=2; x₁= -4
тогда q=2*(-4)= -8
Уравнение примет вид x²+2x-8=0
его корни x₁²-x₂²=(-4)²-(2)²=16-4= 12