Y'= (x^2-9x+9)' * e^(x-7) + (x^2-9x+9) * (e^(x-7))'= =(2x-9)*e^(x-7) + (x^2-9x+9)* e^(x-7)=e^(x-7)*(2x-9+x^2-9x+9)= =e^(x-7)*(x^2 -7x)=e^(x-7)*(x-7)*x. Приравняем в нулю. так как е в любой степени больше нуля, y'=0 при x=0 или x=7. отметим на координатной прямой эти точки 0 и 7 , проставим знаки + - + справа налево. Видно, что в точке х=0 производная меняет знак с + на минус, это точка максимума, в точке х=7 знак меняет с минуса не плюс, это точка минимума. Как раз это точка находится в заданном интервале. Подставим х=7 в исходную функцию у наим.=(7^2-9*7+9)*e^0=-5*1=-5
В случае,если под корнем после запятой чётное количество знаков или нулей(до запятой и после неё,например V0,04,соответственно),то число рациональное. Вот и всё правило!Делаем выводы:первое не подходит,число нулей нечётное,да ещё и после запятой нечётное число знаков(3). Третье отпадает - после запятой(она после целого числа) вообще нуль знаков. А вот 2 - подходит к нашему условию,после запятой 2 знака. А тут даже видно:1,3*1,3 = 1,69 (сначала перемножаем числа без запятых,а потом с полученного числа,с целой части,двигаем запятую на сумму чисел после запятых множителей. Всё поняли?Большинство в это не врубается,теперь вы знаете,что делать!:)
Вот и всё правило!Делаем выводы:первое не подходит,число нулей нечётное,да ещё и после запятой нечётное число знаков(3).
Третье отпадает - после запятой(она после целого числа) вообще нуль знаков.
А вот 2 - подходит к нашему условию,после запятой 2 знака.
А тут даже видно:1,3*1,3 = 1,69 (сначала перемножаем числа без запятых,а потом с полученного числа,с целой части,двигаем запятую на сумму чисел после запятых множителей.
Всё поняли?Большинство в это не врубается,теперь вы знаете,что делать!:)