1) Найдите наименьшее значение ф-ии y = 5cos x + 6x + 6 на отрезке [0;3π/2] Решение Находим первую производную функции: y' = - 5sin(x) + 6 Приравниваем ее к нулю: - 5sin(x) + 6 = 0 Глобальных экстремумов нет Находим стационарные точки: Вычисляем значения функции на концах отрезка f(0) = 11 f(3/2) = 11 ответ: Имеются только локальные экстремумы (на заданном интервале) fmin = 11, fmax = 11
2) Найдите наименьшее значение ф-ии y = (x+6)^2(x+1) - 23 на отрезке [-7;-4] Решение Находим первую производную функции: y' = (x+1)(2x+12) + (x + 6)² или y' = 3x² + 26x + 48 Приравниваем ее к нулю: 3x² + 26x + 48 = 0 D = 676 - 4*3*48 = 100 x₁ = (- 26 - 10)/6 x₁ = - 6 x₂ = (- 26 + 10)/6 x₂ = - 8/3 Вычисляем значения функции на концах отрезка f(- 6) = - 23 f(- 8/3) = - 1121/27 f(- 7) = - 29 f(- 4) = - 35 ответ: fmin = -35, fmax = - 23
Y = x+9/x Найдем точки разрыва функции. x₁ = 0 1. Находим интервалы возрастания и убывания. Первая производная. f'(x) = 1 - 9/x² или f'(x) = (x² - 9) / x² Находим нули функции. Для этого приравниваем производную к нулю x² - 9 = 0, x² ≠ 0 Откуда: x₁ = - 3 x₂ = 3 (-∞ ;-3) f'(x) > 0 функция возрастает (-3; 0) f'(x) < 0 функция убывает (0; 3) f'(x) < 0 функция убывает (3; +∞) f'(x) > 0 функция возрастает В окрестности точки x = -3 производная функции меняет знак с (+) на (-). Следовательно, точка x = -3 - точка максимума. В окрестности точки x = 3 производная функции меняет знак с (-) на (+). Следовательно, точка x = 3 - точка минимума.
Решение
Находим первую производную функции:
y' = - 5sin(x) + 6
Приравниваем ее к нулю:
- 5sin(x) + 6 = 0
Глобальных экстремумов нет
Находим стационарные точки:
Вычисляем значения функции на концах отрезка
f(0) = 11
f(3/2) = 11
ответ:
Имеются только локальные экстремумы (на заданном интервале)
fmin = 11, fmax = 11
2) Найдите наименьшее значение ф-ии y = (x+6)^2(x+1) - 23 на отрезке [-7;-4]
Решение
Находим первую производную функции:
y' = (x+1)(2x+12) + (x + 6)²
или
y' = 3x² + 26x + 48
Приравниваем ее к нулю:
3x² + 26x + 48 = 0
D = 676 - 4*3*48 = 100
x₁ = (- 26 - 10)/6
x₁ = - 6
x₂ = (- 26 + 10)/6
x₂ = - 8/3
Вычисляем значения функции на концах отрезка
f(- 6) = - 23
f(- 8/3) = - 1121/27
f(- 7) = - 29
f(- 4) = - 35
ответ: fmin = -35, fmax = - 23
Найдем точки разрыва функции.
x₁ = 0
1. Находим интервалы возрастания и убывания.
Первая производная.
f'(x) = 1 - 9/x²
или
f'(x) = (x² - 9) / x²
Находим нули функции. Для этого приравниваем производную к нулю
x² - 9 = 0, x² ≠ 0
Откуда:
x₁ = - 3
x₂ = 3
(-∞ ;-3) f'(x) > 0 функция возрастает
(-3; 0) f'(x) < 0 функция убывает
(0; 3) f'(x) < 0 функция убывает
(3; +∞) f'(x) > 0 функция возрастает
В окрестности точки x = -3 производная функции меняет знак с (+) на (-). Следовательно, точка x = -3 - точка максимума. В окрестности точки x = 3 производная функции меняет знак с (-) на (+). Следовательно, точка x = 3 - точка минимума.