f(x)=x ^4 − 3 /16 x ^3 +8x ^2 − 3 /1 a) найти точки экстримума функции б)область определения функции с)Найти вторую производную функции г)Найти точку изгиба графика функции д)Найти выпуклый и концентрический интервалы функции
Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К. На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10! Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы. Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами. Для М и Т это будет 2! и 2!, для А – 3! С учётом порядка позиции их будет: Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой Перестановки с повторением. Всего у нас Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет:
Тогда вероятность (согласно классическому определению):
Попробуем другой, более простой
Перестановки с повторением.
Всего у нас
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
1)x²-x+√5=0
D=1 - 4√5
На первый взгляд, все хорошо, но давайте разберёмся с одной вещью:
1-4√5, посмотрите, ведь 4√5 > 1 => D - отрицательное число. А мы знаем, что, если D<0, то корней нет
ответ: корней нет
2)log7 x≥2 Одз: x>0
log7 x≥2log7 7
log7 x≥log7 7²
log7 x≥log7 49
x≥49
Не забываем сравнить с одз:
- +
◎> х
0
- +
●> х
49
=> x ∈ [49;+∞)
ответ: x ∈ [49;+∞)
3)1/(х²+2x-1) <0 одз: х²+2x-1≠0
х1≠ -1+√2
х2≠ -1-√2
Решим данное неравенство методом интервалов, для этого найдём корни уравнения:
х²+2x-1=0
D=4-4*(-1)=8
x1= (-2+2√2)/2 = 2(-1+√2)/2 = -1+√2
х2= (-2-2√2)/2 = 2(-1-√2)/2 = -1-√2
+ - +
◎◎--> х
-1-√2 -1+√2
=> x∈(-1-√2;-1+√2)
ответ: x∈(-1-√2;-1+√2)