Решение Не выполняя построения, установите взаимное расположение графиков лин.функций: Будем проверять равенство коэффициентов при х и свободные члены y = k₁ + b₁ y = k₂x + b₂ сократим дроби 1) y=12/16x+8/10 = 3/4x + 4/5 y=15/20x+4/5 = 3/4x + 4/5 k₁ = k₂ и b₁ = b₂ Таким образом: y=12/16x+8/10 и y=15/20x+4/5 уравнения равносильны, значит графики этих функций - одна и та же прямая. То есть графики сливаются или совпадают.
2) y=8/9x-1/7 и y=8/9x+1/10 k₁ = k₂ = 8/9 значит графики этих функций - параллельны.
3) у=7x+8 и y=*x-4 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
4) y=*x-15 и y=3x+2 k₁ ≠ k₂ и b₁ ≠ b₂ значит графики этих функций - пересекаются
216x^3 - 1 = (6x)^3 - 1^3 = (6x-1)(36x^2+6x+1)
100b^2 - 140bx^2 + 49x^4 = (10b - 7x^2)^2=(10b-7x^2)(10b-7x^2)
125b^3 + 27 = (5b + 3)(25b^2 - 15b + 9)
(5a - 1/5)^2 = 25a^2 - 2a + 1/25)
(3a - 5b^2)(9a^2 + 15ab^2 + 25b^4) = (3a)^3 - (5b^2)^3 = 27a^3 - 125b^6
(0,8x+ 5)(5 - 0,8x) = (5 + 0,8x)(5 - 0,8x) = 5^2 - (0,8x)^2 = 25 - 0,64x^2
(7x+ 0,4)^2 = 49x^2 + 5,6x + 0,16
(6y + 1)(36y^2 - 6y + 1) = (6y)^3 + 1^3 = 216y^3 + 1
25x^2 + 60xy + 36y^2 = (5x + 6y)^2 = (5x + 6y)(5x + 6y).
Не выполняя построения, установите взаимное расположение графиков лин.функций:
Будем проверять равенство коэффициентов при х и свободные члены
y = k₁ + b₁ y = k₂x + b₂
сократим дроби
1) y=12/16x+8/10 = 3/4x + 4/5
y=15/20x+4/5 = 3/4x + 4/5
k₁ = k₂ и b₁ = b₂
Таким образом:
y=12/16x+8/10 и y=15/20x+4/5
уравнения равносильны, значит графики этих функций - одна и та же прямая. То есть графики сливаются или совпадают.
2) y=8/9x-1/7 и y=8/9x+1/10
k₁ = k₂ = 8/9
значит графики этих функций - параллельны.
3) у=7x+8 и y=*x-4
k₁ ≠ k₂ и b₁ ≠ b₂
значит графики этих функций - пересекаются
4) y=*x-15 и y=3x+2
k₁ ≠ k₂ и b₁ ≠ b₂
значит графики этих функций - пересекаются