|x| - это расстояние от нуля до x, поэтому решением этой системы неравенств (ведь тут не одно неравенство, а два) является объединение двух интервалов (-10; -4)∪(4;10). Концы интервалов в ответ не входят, поэтому подсчитываем количество целых решений внутри; достаточно подсчитать их количество в одном из них и удвоить: 5·2=10
ответ: 10
Замечание 1. Если бы интервал был бы большим, мы бы придумали, как подсчитать количество целых точек на основании концевых точек, но здесь легче их просто пересчитать.
Замечание 2. И все-таки хочется придумать общую формулу. Если интервал (m;n), где m и n - целые числа и m<n, то целых чисел внутри n-m-1.
объединение двух интервалов
(-10; -4)∪(4;10).
Концы интервалов в ответ не входят, поэтому подсчитываем количество целых решений внутри; достаточно подсчитать их количество в одном из них и удвоить: 5·2=10
ответ: 10
Замечание 1. Если бы интервал был бы большим, мы бы придумали, как подсчитать количество целых точек на основании концевых точек, но здесь легче их просто пересчитать.
Замечание 2. И все-таки хочется придумать общую формулу.
Если интервал (m;n), где m и n - целые числа и m<n, то целых чисел внутри n-m-1.
2sin^2x-2sinxcosx=cos^2-sin^2x,
2sinx*(sinx-cosx)+sin^2x-cos^2x=0,
2sinx(sinx-cosx)+(sinx-cosx)*(sinx+cosx)=0,
(sinx-cosx)(2sinx+sinx+cosx)=0,
(sinx-cosx)(3sinx+cosx)=0
1. sinx-cosx=0, sinx=cosx, tgx=1
x=pi/4+pi*k, k-целые
2. 3sinx+cosx=0, 3sinx=-cosx, tgx=-1/3
x=arctg(-1/3)+pi*k, k-целые
2)cos3x+cosx=0,
4cos^3x-3cosx+cosx=0,
4cos^3x-2cosx=0,
4cosx(cosx-√2/2)(cosx+√2/2)=0
1. cosx=0, x=pi/2+pi*k, k-целые
2. cosx=√2/2, x=+-pi/4+2pi*k
3. cosx=-√2/2, x=+-3pi/4+2pi*k
Корни из промежутка [-pi/2;pi/2]:
x=-pi/2, x=pi/2, x=-pi/4, x=pi/4