а) прямая проходит через начало координат, т. е. через точку О (0;0), а также через точку А (0,6;-2,4). это значит что у=0 при х=0 и у=-2,4 при х=0,6. графиком функции является прямая. уравнение прямой - у=к*х осталось найти коэффициент к. -2,4 = (-4)*0.6 отсюда у=-4х б) прямая пересекает оси координат в точках В (0;4) и С (-2,5;0). получаем систему уравнений 4=0*к+а и 0=(-2.5)*к+а. из первого уравнения а=4 подставляем значение а во второе уравнение и рассчитываем к. в итоге получаем к=1,6. у=1.6х+4
2) Предположим, что при утверждение справедливо, то есть:
3) Докажем, что при справедливо утверждение:
Доказательство. Преобразуем:
Первое слагаемое делится на 16 по предположению, сделанному на втором шаге.
Рассмотрим второе слагаемое . Первый множитель 8 делится на 8. Заметим, что второй множитель является четным, так как выражение при дает нечетные числа, тогда числа вида являются четными. Таким образом, второе слагаемое делится на .
Итак, оба слагаемых делятся на 16. Значит и вся сумма делится на 16. Доказано.
а) прямая проходит через начало координат, т. е. через точку О (0;0), а также через точку А (0,6;-2,4). это значит что у=0 при х=0 и у=-2,4 при х=0,6. графиком функции является прямая. уравнение прямой - у=к*х осталось найти коэффициент к. -2,4 = (-4)*0.6 отсюда у=-4х б) прямая пересекает оси координат в точках В (0;4) и С (-2,5;0). получаем систему уравнений 4=0*к+а и 0=(-2.5)*к+а. из первого уравнения а=4 подставляем значение а во второе уравнение и рассчитываем к. в итоге получаем к=1,6. у=1.6х+4
1) Проверим справедливость утверждения при :
2) Предположим, что при утверждение справедливо, то есть:
3) Докажем, что при справедливо утверждение:
Доказательство. Преобразуем:
Первое слагаемое делится на 16 по предположению, сделанному на втором шаге.
Рассмотрим второе слагаемое . Первый множитель 8 делится на 8. Заметим, что второй множитель является четным, так как выражение при дает нечетные числа, тогда числа вида являются четными. Таким образом, второе слагаемое делится на .
Итак, оба слагаемых делятся на 16. Значит и вся сумма делится на 16. Доказано.