Пусть х литров молока в первом бидоне, а у литров - во втором. х+у=75 литров молока. Если из первого вылить 1/5 часть молока останется х-1/5x=5x/5-x/5=4/5x=0,8х литров, а во второй долить 2 литра, получим у+2 литров молока, что в полтора раза больше, чем в первом: у+2=1,5*0,8х=1,2х Составим и решим систему уравнений: х+у=75 у+2=1,2х
Выразим значение у в первом уравнении: у=75-х
Подставим его во второе уравнение (метод подстановки): у+2=1,2х 75-х+2=1,2х 77-х-1,2х=0 -2,2х=-77 2,2х=77 х=77:2,2 х=35 (литров молока) - в первом бидоне Тогда во втором у=75-х=75-35=40 литров. ответ: в первом бидоне было 35 литров молока, а во втором 70 литров молока.
В решении.
Объяснение:
Определите,при каких значениях y отрицательно выражение:
1) 5 - 2у/3 < 0
Умножить неравенство на 3, чтобы избавиться от дробного выражения:
15 - 2у < 0
-2y < -15
2y > 15 знак меняется
При y > 7,5.
2) 3/4 - 2у < 0
-2y < -3/4
2y > 3/4 знак меняется
y > 3/4 : 2
При y > 3/8.
4) (8y - 3)/5 - 2/5 < 0
Умножить неравенство на 5, чтобы избавиться от дробного выражения:
8y - 3 - 2 < 0
8у < 5
При y < 5/8.
5) (3y - 5)/2 - y/2 < 0
Умножить неравенство на 2, чтобы избавиться от дробного выражения:
3y - 5 - y < 0
2y < 5
При y < 2,5.
х+у=75 литров молока.
Если из первого вылить 1/5 часть молока останется х-1/5x=5x/5-x/5=4/5x=0,8х литров, а во второй долить 2 литра, получим у+2 литров молока, что в полтора раза больше, чем в первом: у+2=1,5*0,8х=1,2х
Составим и решим систему уравнений:
х+у=75
у+2=1,2х
Выразим значение у в первом уравнении:
у=75-х
Подставим его во второе уравнение (метод подстановки):
у+2=1,2х
75-х+2=1,2х
77-х-1,2х=0
-2,2х=-77
2,2х=77
х=77:2,2
х=35 (литров молока) - в первом бидоне
Тогда во втором у=75-х=75-35=40 литров.
ответ: в первом бидоне было 35 литров молока, а во втором 70 литров молока.
(проверим: 35-35*1/5=35-7=28 литров
40+2=42 литра
28*1,5=42 литра)