а) (3/sinx)-(1/sin^2x)=2 sinx не равно 0
(3sinx-1)/Sin^2x=2 X не равно пm, где m - целое число
3sinx-1=2sin^2x
2sin^2x-3sinx+1=0
sinx=t
2t^2-3t+1=0
D=9-8=1
t1=1 t2=1/2
sinx=1 sinx=1/2
x1=п/2+2пk x2=п/6+2пn
где k - целое число x3=5п/6+2пl
где n, l - целые числа
б) x1=3п/2
x2=-11п/6
x3=-7п/6
а) (3/sinx)-(1/sin^2x)=2 sinx не равно 0
(3sinx-1)/Sin^2x=2 X не равно пm, где m - целое число
3sinx-1=2sin^2x
2sin^2x-3sinx+1=0
sinx=t
2t^2-3t+1=0
D=9-8=1
t1=1 t2=1/2
sinx=1 sinx=1/2
x1=п/2+2пk x2=п/6+2пn
где k - целое число x3=5п/6+2пl
где n, l - целые числа
б) x1=3п/2
x2=-11п/6
x3=-7п/6
1/cos^2(a) – tg^2(a)-sin^2(a)= 1/cos^2(a) – sin^2(a)/cos^2(a))-sin^2(a)=
=[1 – sin^2(a) ]/cos^2(a))-sin^2(a)=cos^2(a)/cos^2(a))-sin^2(a)=
=1-sin^2(a)=cos^2(a)
2)
cos^2(a)+ctg^2(a)-1/sin^2(a)=cos^2(a)+[cos^2(a)-1]/sin^2(a)=
=cos^2(a)-sin^2(a)]/sin^2(a)=cos^2(a)-1 = -sin^2(a)
3)
1/cos^2(a) – tg^2(a)(cos^2(a)+1)=1/cos^2(a) – sin^2(a)-sin^2(a)/(cos^2(a)=
=(1 – sin^2(a))/cos^2(a)-sin^2(a)=1-sin^2(a)=cos^2(a)
4) (1+sin^2(a))ctg^2(a) – 1/sin^2(a)=cos^2/sin^2 +cos^2 – 1/sin^2(a)=
=(cos^2 - 1)/sin^2 +cos^2= -sin^2/sin^2 +cos^2= -1+cos^2= -sin^2(a)
5)sin(a)/(1+cos(a)) + sin(a)/(1-cos(a))=sin(a) * ((1-cosa)+(1+cosa)) / (1-cos^2)=2/sin(a)
6)cos(a)/(1+sin(a))+ cos(a)/(1-sin(a))=cos(a)* ((1-sina+1+sina)) / (1-sin^2a)= 2/cos(a)