Площадь = интеграл от разности "верхней" и "нижней" функции.
Верхней здесь является у=3, нижней: y=x^2-1. Пределы интегрирования = точки пересечения графиков (в порядке возрастания расположены), а именно x^2-1=3, x=2 и х=-2. Т.е. пределы интегрирования: от -2 до +2.
(х-2)(х+3)/(х-4)>=0
x^2+3x-2x-6/x-4 >=0
x^2-x-6/x-4 >=0
x^2-x-6=0
d=1+24=25=5^2
x1=1+5/2=3
x2=1-5/2=-2
x^2-x-6=(x-3)(x+2)>=0
x принадлежит (-бесконечности: -3] в обьединении [2;+бесконечности)
х принадлежит (4:+бесконечности)
обьединяем
х принадлежит (4:+бесконечности)
х(х+1)(х-1)/(x+2)(х-2)>=0
(x^2+x)(x-1)/(x+2)(х-2)>=0
x^3-x^2+x^2-x/(x+2)(х-2)>=0
x(x^2-1)/(x+2)(х-2)>=0
x принадлежит (-бесконечности: -1] в обьединении [1:+бесконечности)
x принадлежит(-бесконечности: -2) в обьединении (2:+бесконечности)
обьединяем
х принадлежит(-2:-1] в обьединении [1;2)
квадратные скобки значат что значение включается в промежуток, круглые не включают
Площадь = интеграл от разности "верхней" и "нижней" функции.
Верхней здесь является у=3, нижней: y=x^2-1. Пределы интегрирования = точки пересечения графиков (в порядке возрастания расположены), а именно x^2-1=3, x=2 и х=-2. Т.е. пределы интегрирования: от -2 до +2.
интеграл (3 - x^2 + 1) dx = 3x - x^3 /3 + x = 4x - x^3 /3 = x*(4 - x^2 /3)
Подставляем вначале верхнее значение (+2), затем отнимаем значение при нижнем (-2):
2*(4-4/3)=2*(8/3) = 16/3
-2*(4-4/3) = -16/3
16/3 + 16/3 = 32/3 - это и есть площадь фигуры.
Рисунок - в прикреплении.