Дано 2019-значное число, записанное с цифр 1, 3 и 5. Делитель этого числа называется веселым, если его последняя цифра равна 7. Докажите, что меньше половины всех делителей числа являются веселыми.
посмотреть в олимпиаде
Комментарий/решение:
пред. Правка 4 210 месяца 16 дней назад #
Пусть
- все делители данного числа, отличные от 1 и от самого числа.
Рассмотрим пары
и
Произведение в каждой паре даёт данное число. Если оба делителя в одной паре - веселые, то данное число оканчивается на 9, что невозможно. Следовательно, в каждой паре не больше одного веселого делителя. Весёлых не больше [n/2]. А делителей, включая 1 и само число, n + 2
График функции заданный уравнением у=(а+1)x+а-1 пересекает ось абсцисс в точке с координатами (-2; 0) 1) найти значение a 2) запишите функцию вида у=kx+b 3) не выполняя построение графика функции, определите четверть через которую проходит.
1) у=(а+1)x+а-1 , Дано: если x = - 2 , то y =0 0 =(a+1)*(-2) + a -1 ⇔ 0 = - 2a - 2 + a -1 ⇔ a = - 3 . --- 2) у=(а+1)x+а-1 , a = - 3 у=(-3+1)x + (-3)-1 ⇔ у = - 2x - 4. * * * k =tgα= - 2< 0 ↓ ; b = -4 * * * --- 3) у = - 2x - 4 * * * x =0 ⇒ y = - 4 * * * График функции проходит через точек (- 2; 0) и (0 ,- 4) ,следовательно проходит через 2 ,3 и 4 четверть. Можно по другому: у = - 2x - 4⇔ 2x +у = - 4 ⇔ x/(-2) +у /(-4) = 1. Уравнение прямой в отрезках ( x/a +y/b =1) . * * * абсолютные величины чисел a и b равны длинам отрезков, которые отсекает прямая на координатных осях Ox и Oy, считая от начала координат * * * График проходит через 2 ,3 и 4 четверть.
Дано 2019-значное число, записанное с цифр 1, 3 и 5. Делитель этого числа называется веселым, если его последняя цифра равна 7. Докажите, что меньше половины всех делителей числа являются веселыми.
посмотреть в олимпиаде
Комментарий/решение:
пред. Правка 4 210 месяца 16 дней назад #
Пусть
- все делители данного числа, отличные от 1 и от самого числа.
Рассмотрим пары
и
Произведение в каждой паре даёт данное число. Если оба делителя в одной паре - веселые, то данное число оканчивается на 9, что невозможно. Следовательно, в каждой паре не больше одного веселого делителя. Весёлых не больше [n/2]. А делителей, включая 1 и само число, n + 2
Miron.yurk
d1,d2dn
График функции заданный уравнением у=(а+1)x+а-1 пересекает ось абсцисс в точке с координатами (-2; 0)
1) найти значение a
2) запишите функцию вида у=kx+b
3) не выполняя построение графика функции, определите четверть через которую проходит.
1)
у=(а+1)x+а-1 ,
Дано: если x = - 2 , то y =0
0 =(a+1)*(-2) + a -1 ⇔ 0 = - 2a - 2 + a -1 ⇔ a = - 3 .
---
2)
у=(а+1)x+а-1 , a = - 3
у=(-3+1)x + (-3)-1 ⇔ у = - 2x - 4. * * * k =tgα= - 2< 0 ↓ ; b = -4 * * *
---
3)
у = - 2x - 4 * * * x =0 ⇒ y = - 4 * * *
График функции проходит через точек (- 2; 0) и (0 ,- 4) ,следовательно проходит через 2 ,3 и 4 четверть.
Можно по другому:
у = - 2x - 4⇔ 2x +у = - 4 ⇔ x/(-2) +у /(-4) = 1. Уравнение прямой в отрезках ( x/a +y/b =1) .
* * * абсолютные величины чисел a и b равны длинам отрезков, которые отсекает прямая на координатных осях Ox и Oy, считая от начала координат * * *
График проходит через 2 ,3 и 4 четверть.