Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
Для решения задачи возьмем первоначальное количество яблонь на 1 участке за х. Если с 1 участка пересадить 1 яблоню на второй, то количество яблонь на первом выразим как (х – 1) яблонь. Тогда количество яблонь на 2 участке можно выразить как 3(х – 1). Известно, что всего на двух участках было 84 яблони. Составим и решим уравнение: (х – 1) + 3(х - 1) = 84 х – 1 + 3х – 3 = 84 4х = 84 + 3 + 1 = 88 х = 22 Значит 22 яблони было первоначально на первом участке. Найдем сколько было первоначально яблонь на втором участке: 84 – 22 = 62 Произведем проверку: Если от 22 яблонь на 1 участке пересадить одну на 2 участок, то там останется 21 яблоня, что будет в три раза меньше, чем станет на втором участке - 63 яблони. 21 + 63 = 84 ответ: На втором участке изначально было 62 яблони.
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так
(х – 1) + 3(х - 1) = 84
х – 1 + 3х – 3 = 84
4х = 84 + 3 + 1 = 88
х = 22
Значит 22 яблони было первоначально на первом участке.
Найдем сколько было первоначально яблонь на втором участке:
84 – 22 = 62
Произведем проверку:
Если от 22 яблонь на 1 участке пересадить одну на 2 участок, то там останется 21 яблоня, что будет в три раза меньше, чем станет на втором участке - 63 яблони.
21 + 63 = 84
ответ: На втором участке изначально было 62 яблони.