Рассмотрим трехзначное число 324=300+20+5=3·100+2·10+5, в этом числе 3 сотни, 2 десятка и 5 единиц.
Если в числе содержится a сотен, b десятков и c единиц, то это число (100а +10b+c). Число, записанное теми же цифрами, но в обратном порядке содержит с сотен, b десятков и а единиц. (100с+10b+a). Сумма этих чисел: (100а +10b+c) + (100с+10b+a)=101a+20b+101c По условию b=2a c=3a Значит 101а +20b+101c=101а +20·2a+101·3a=101a+40a+303a=444a. 444 делится на 4, значит и произведение 444а делится на 4, значит сумма (100а +10b+c) + (100с+10b+a) делится на 4.
Это круги Эйлера. Вообще сложнейшая тема. Пусть A - множество всех семей, мощность множества N(A)=44 A1 - множество семей, держащих коров, N(A1)=25 A2 - множество семей, держащих овец, N(A2)=28 A3 - множество семей, держащих свнией, N(A3)=26 попарные пересечения множеств A1,A2,A3 A1∩A2 - множество семей, держащих коров и овец, N(A1∩A2)=15 A2∩A2 - множество семей, держащих овец и свиней, N(A2∩A3)=13 A1∩A3 - множество семей, держащих коров и свиней, N(A1∩A3)=x пересечение множеств A1,A2,A3 A1∩A2∩A3 - множество семей, держащих коров, овец и свиней, N(A1∩A2∩A3)=5 По методу включения-исключения N(A)=N(A1)+N(A2)+N(A3)-N(A1∩A2)-N(A2∩A3)-N(A1∩A3)+N(A1∩A2∩A3)= =25+28+26-15-13-x+5=44 Отсюда x=12, N(A1∩A3)=12 семей, держащих коров и свиней
324=300+20+5=3·100+2·10+5,
в этом числе 3 сотни, 2 десятка и 5 единиц.
Если в числе содержится a сотен, b десятков и c единиц, то это число (100а +10b+c).
Число, записанное теми же цифрами, но в обратном порядке содержит с сотен, b десятков и а единиц.
(100с+10b+a).
Сумма этих чисел:
(100а +10b+c) + (100с+10b+a)=101a+20b+101c
По условию
b=2a
c=3a
Значит
101а +20b+101c=101а +20·2a+101·3a=101a+40a+303a=444a.
444 делится на 4, значит и произведение 444а делится на 4, значит сумма (100а +10b+c) + (100с+10b+a) делится на 4.
Пусть
A - множество всех семей, мощность множества N(A)=44
A1 - множество семей, держащих коров, N(A1)=25
A2 - множество семей, держащих овец, N(A2)=28
A3 - множество семей, держащих свнией, N(A3)=26
попарные пересечения множеств A1,A2,A3
A1∩A2 - множество семей, держащих коров и овец, N(A1∩A2)=15
A2∩A2 - множество семей, держащих овец и свиней, N(A2∩A3)=13
A1∩A3 - множество семей, держащих коров и свиней, N(A1∩A3)=x
пересечение множеств A1,A2,A3
A1∩A2∩A3 - множество семей, держащих коров, овец и свиней, N(A1∩A2∩A3)=5
По методу включения-исключения
N(A)=N(A1)+N(A2)+N(A3)-N(A1∩A2)-N(A2∩A3)-N(A1∩A3)+N(A1∩A2∩A3)=
=25+28+26-15-13-x+5=44
Отсюда x=12, N(A1∩A3)=12 семей, держащих коров и свиней