В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ololosha14
ololosha14
04.04.2023 02:31 •  Алгебра

Функция f(x)=3-3x задала на промежутке [0; 3]. найдите область значений этой функции.

Показать ответ
Ответ:
01223
01223
08.10.2020 08:18

Объяснение:

f(x)=3-3x\\x=0, f(0)=3-3*0=3\\x=3, f(3)= 3-3*3=3-9=-6\\

Область значения функции [-6;3]

0,0(0 оценок)
Ответ:
ekimmail631
ekimmail631
08.10.2020 08:18

Е(f) = [-6;3].

Объяснение:

Первый решения:

По условию х ∈ [0;3], т.е.

0 ≤ х ≤ 3, тогда

0•(-3) ≥ -3х ≥ 3•(-3),

0 ≥ -3х ≥ - 9,

3+0 ≥ 3 - 3х ≥ 3 - 9,

3 ≥ 3 - 3х ≥ - 6,

3 ≥ f(x) ≥ - 6,

Е(f) = [-6;3].

Второй решения:

f(x)= -3x + 3 - линейная, графиком является прямая, т.к. угловой коэффициент k = -3, -3<0, функция является убывающей на всей области определения.

Своего наименьшего значения функция достигает при наибольшем значении х:

при х = 3 f(x)=f(3)= -3•3 + 3 = -9+3 = -6.

Своего наибольшего значения функция достигает при наименьшем значении х:

при х = 0 f(x)=f(0)= -3•0 + 3 = 0+3 = 3.

Так как функция непрерывна, то Е(f) = [-6;3].

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота