В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
fgdfc1
fgdfc1
18.11.2022 21:36 •  Алгебра

функция f является нечетной и min f(x)=1 [2; 5], max f(x)=3 [2; 5]. найдите min f(x) [-5;-2], max f(x) [-5; -2].

Показать ответ
Ответ:
St1ler
St1ler
08.08.2022 21:12

Линейное уравнение с двумя переменными имеет вид: ах + by + c = 0. Графиком данного уравнения, в общем виде, является прямая. Если только один коэффициент при переменной отличен от нуля, то графиком такого уравнения будет прямая, параллельная одной из осей координат. Если оба коэффициента при переменных равны 0, и с = 0, то графиком будет вся координатная плоскость. А если при данных условиях с ≠ 0, то графиком будет пустое множество. Если же оба коэффициента при переменных отличны от 0, то прямая может быть абсолютно любой.

ответ: прямая; прямая параллельная оси координат; координатная плоскость; ничего (пустое множество)

0,0(0 оценок)
Ответ:
Fedotaq
Fedotaq
08.08.2020 00:30

Возможно, существует и другой метод доказательства, но я буду использовать метод от противного.

Итак, нужно доказать, что a=b=c, то есть

\displaystyle \left \{ {{a=b} \atop {b=c}} \right. \Rightarrow a=b=c

Перепишем наше равенство, переместив все в левую часть:

a^2+b^2+c^2-ac-bc-ac=0

1) Предположим, что a \neq b (при этом подразумевая, что b=c)

Тогда получаем следующее:

b=c \Rightarrow b^2=c^2; bc=c\cdot c=c^2

a^2+c^2+c^2-ab-c^2-ac=0 \Rightarrow a^2+c^2-ab-ac=0 \Rightarrow \\ \Rightarrow a^2+c^2-a(b+c)=0 \Rightarrow a^2+c^2=a(b+c) \Rightarrow a^2+b^2=2ac

Далее смотрим: слева неотрицательное выражение всегда, а справа может быть и отрицательное, но у нас по условию дано, что для любых действительных чисел равенство выполняется, а здесь это далеко не так (на языке математики запись такая: \exists (a;c): ac )

Возможно, это не очень явно, поэтому вспомним, что по предположению b=c, и доделаем:

a^2+b^2=2ac \Rightarrow a^2+b^2=2ab \Rightarrow a^2-2ab+b^2=0 \Rightarrow (a-b)^2=0 \Rightarrow \\ \Rightarrow a=b

А это прямо яркий пример противоречия: предположив, что a\neq b, мы получили a=b.

Из этого следует, что a=b, но и из предположенного же b=c уже следует, что a=b=c.

Вообще, по идее, этого уже достаточно, ну на всякий случай посмотрим ещё:

2) Предположим, что b \neq c (при этом a=b)

a=b \Rightarrow a^2=b^2; ab=a\cdot a = a^2

b^2+b^2+c^2-b^2-bc-ac=0 \Rightarrow b^2+c^2-bc-ac=0 \Rightarrow \\ \Rightarrow b^2+c^2=c(a+b) \Rightarrow b^2+c^2=2bc \Rightarrow b^2-2bc+c^2=0 \Rightarrow \\ \Rightarrow (b-c)^2=0 \Rightarrow b=c

И тогда уже точно исходя из пунктов 1) и 2), получаем

\displaystyle \left \{ {{a=b} \atop {b=c}} \right. \Rightarrow a=b=c, что и требовалось доказать.

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота