1) ответ: 63/64. Объяснение: ситуация А, когда хотя бы один ответ будет угадан, противоположна ситуации Ä, когда не будет угадан ни один верный ответ, т.е. все ответы будут неверными. (Прости, у меня не получается над буквой А добавить черточку, я вместо этого использовала А с двумя точками: Ä. Если нужно, посмотри в интернете, как обозначается событие "не А"). Вероятность этого события ("не А") вычисляется гораздо проще - она равна (1/2)⁶, где 1/2 - вероятность выбора неправильного ответа из двух предложенных, а 6 - количество вопросов. Вероятность события А (угадан хотя бы один верный ответ) равна 1 минус вероятность Ä, т.е. 1 - (1/2)⁶ = 1 - 1/64 = 63/64.
2)Тут тоже есть разные решения. Один из них такой: всего монет 11, золотых из них 5. Вероятность, что одна вынутая наугад монета окажется золотой, равна 5/11, т.е. 5 благоприятных исходов из 11 возможных. Ага, вынул он монетку, осталось 10, из них 4 золотых, т.е. вероятность наугад вынуть золотую равна 4/10. Дальше 3 золотых из 9 - вероятность 3/9, 2 золотых из 8 - вероятность 2/8, 1 из 7 - вероятность 1/7. Всё, все 5 монет вынуты. Теперь осталось перемножить вероятности всех пяти событий:
Но вообще эти задачки наверняка есть в интернете уже)))) По крайней мере про Буратино я точно встречала, там только решение другое.
Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны. Доказательство. Пусть у треугольников ABC и A1B1C1 ∠ A = ∠ A1, AB = A1B1, AC = A1C1. Пусть есть треугольник A1B2C2 – треугольник равный треугольнику ABC, с вершиной B2, лежащей на луче A1B1, и вершиной С2 в той же полуплоскости относительно прямой A1B1, где лежит вершина С1. Так как A1B1=A1B2, то вершины B1 и B2 совпадают. Так как ∠ B1A1C1 = ∠ B2A1C2, то луч A1C1 совпадает с лучом A1C2. Так как A1C1 = A1C2, то точка С1 совпадает с точкой С2. Следовательно, треугольник A1B1C1 совпадает с треугольником A1B2C2, а значит, равен треугольнику ABC.
Объяснение: ситуация А, когда хотя бы один ответ будет угадан, противоположна ситуации Ä, когда не будет угадан ни один верный ответ, т.е. все ответы будут неверными. (Прости, у меня не получается над буквой А добавить черточку, я вместо этого использовала А с двумя точками: Ä. Если нужно, посмотри в интернете, как обозначается событие "не А"). Вероятность этого события ("не А") вычисляется гораздо проще - она равна (1/2)⁶, где 1/2 - вероятность выбора неправильного ответа из двух предложенных, а 6 - количество вопросов. Вероятность события А (угадан хотя бы один верный ответ) равна 1 минус вероятность Ä, т.е. 1 - (1/2)⁶ = 1 - 1/64 = 63/64.
2)Тут тоже есть разные решения. Один из них такой:
всего монет 11, золотых из них 5. Вероятность, что одна вынутая наугад монета окажется золотой, равна 5/11, т.е. 5 благоприятных исходов из 11 возможных. Ага, вынул он монетку, осталось 10, из них 4 золотых, т.е. вероятность наугад вынуть золотую равна 4/10. Дальше 3 золотых из 9 - вероятность 3/9, 2 золотых из 8 - вероятность 2/8, 1 из 7 - вероятность 1/7. Всё, все 5 монет вынуты. Теперь осталось перемножить вероятности всех пяти событий:
Но вообще эти задачки наверняка есть в интернете уже)))) По крайней мере про Буратино я точно встречала, там только решение другое.
Доказательство. Пусть у треугольников ABC и A1B1C1 ∠ A = ∠ A1, AB = A1B1, AC = A1C1.
Пусть есть треугольник A1B2C2 – треугольник равный треугольнику ABC, с вершиной B2, лежащей на луче A1B1, и вершиной С2 в той же полуплоскости относительно прямой A1B1, где лежит вершина С1.
Так как A1B1=A1B2, то вершины B1 и B2 совпадают.
Так как ∠ B1A1C1 = ∠ B2A1C2, то луч A1C1 совпадает с лучом A1C2.
Так как A1C1 = A1C2, то точка С1 совпадает с точкой С2. Следовательно, треугольник A1B1C1 совпадает с треугольником A1B2C2, а значит, равен треугольнику ABC.