В решении.
Объяснение:
Укажите соответствующий вывод для каждого неравенства. Обоснуйте свой ответ. [ ]
а) х²+3х+8<0
Приравнять к нулю и решить квадратное уравнение:
х² + 3х + 8 = 0
D=b²-4ac =9 - 32 = -23
D < 0
Уравнение не имеет действительных корней.
Значит, неравенство выполняется всегда или не выполняется никогда.
Подставить в неравенство произвольное значение х:
х = 0;
0 + 0 + 8 < 0, не выполняется.
Значит, неравенство не имеет решений. ответ 1).
b) х²+12х+36≤ 0
х² + 12х + 36 = 0
D=b²-4ac =144 - 144 = 0 √D=0
х₁,₂=(-b±√D)/2a
х₁,₂=(-12±0)/2
х₁,₂= -6.
Уравнение квадратичной функции, график - парабола, ветви направлены вверх, парабола "стоит" на оси Ох в точке х= -6.
Решение неравенства x={-6}. ответ 3). Скобка фигурная.
c) х²-5х+4≤0
х² - 5х + 4 = 0
D=b²-4ac = 25 - 16 = 9 √D=3
х₁=(-b-√D)/2a
х₁=(5-3)/2
х₁=2/2
х₁=1;
х₂=(-b+√D)/2a
х₂=(5+3)/2
х₂=8/2
х₂=4.
Уравнение квадратичной функции, график - парабола, ветви направлены вверх, пересекают ось Ох при х = 1 и х = 4.
Решение неравенства: х∈[1; 4]. ответ 4).
Неравенство нестрогое, скобки квадратные.
d) –х²+9>0
–х² = -9
х² = 9
х = ±√9
х = ±3;
Уравнение квадратичной функции, график - парабола, ветви направлены вниз, парабола пересекает ось Ох в точках х = -3 и х= 3.
Решение неравенства х∈(-3; 3). ответ 4).
Неравенство строгое, скобки круглые.
1) Неравенство не имеет решений.
2) Решением неравенства является вся числовая прямая.
3) Решением неравенства является одна точка.
4) Решением неравенства является закрытый промежуток.
5) Решением неравенства является открытый промежуток.
6) Решением неравенства является объединение двух промежутков
y = -x
1) Функция имеет единственный ноль к точке (0, 0)
2) Область определения функции ( -∞ ; +∞)
3) Область значений такая же, т.е. ( -∞ ; +∞)
4) Область определения совпадает с областью значений
5) Функция располагается в 2 и 4 четвертях
6) Функция положительна ТОГДА И ТОЛЬКО ТОГДА, когда её аргумент отрицателен
7) Функция отрицательна ТОГДА И ТОЛЬКО ТОГДА, когда её аргумент положителен
8) Это монотонно убывающая функция
9) Функция убывает на всей своей области определения
10) Функция не имеет периода
11) График этой функции - прямая, проходящая через центр координат
12) Это нечётная функция
13) Тангенс угла наклона касательной к точке графика постоянен и равен -1 для всех х
14) Площадь под графиком от 0 до х равна
Здесь все свойства функции, выбирайте нужные.
На графике красным - сам график
Голубым подписаны четверти, их подписывать не обязательно.
В решении.
Объяснение:
Укажите соответствующий вывод для каждого неравенства. Обоснуйте свой ответ. [ ]
а) х²+3х+8<0
Приравнять к нулю и решить квадратное уравнение:
х² + 3х + 8 = 0
D=b²-4ac =9 - 32 = -23
D < 0
Уравнение не имеет действительных корней.
Значит, неравенство выполняется всегда или не выполняется никогда.
Подставить в неравенство произвольное значение х:
х = 0;
0 + 0 + 8 < 0, не выполняется.
Значит, неравенство не имеет решений. ответ 1).
b) х²+12х+36≤ 0
Приравнять к нулю и решить квадратное уравнение:
х² + 12х + 36 = 0
D=b²-4ac =144 - 144 = 0 √D=0
х₁,₂=(-b±√D)/2a
х₁,₂=(-12±0)/2
х₁,₂= -6.
Уравнение квадратичной функции, график - парабола, ветви направлены вверх, парабола "стоит" на оси Ох в точке х= -6.
Решение неравенства x={-6}. ответ 3). Скобка фигурная.
c) х²-5х+4≤0
Приравнять к нулю и решить квадратное уравнение:
х² - 5х + 4 = 0
D=b²-4ac = 25 - 16 = 9 √D=3
х₁=(-b-√D)/2a
х₁=(5-3)/2
х₁=2/2
х₁=1;
х₂=(-b+√D)/2a
х₂=(5+3)/2
х₂=8/2
х₂=4.
Уравнение квадратичной функции, график - парабола, ветви направлены вверх, пересекают ось Ох при х = 1 и х = 4.
Решение неравенства: х∈[1; 4]. ответ 4).
Неравенство нестрогое, скобки квадратные.
d) –х²+9>0
Приравнять к нулю и решить квадратное уравнение:
–х² = -9
х² = 9
х = ±√9
х = ±3;
Уравнение квадратичной функции, график - парабола, ветви направлены вниз, парабола пересекает ось Ох в точках х = -3 и х= 3.
Решение неравенства х∈(-3; 3). ответ 4).
Неравенство строгое, скобки круглые.
1) Неравенство не имеет решений.
2) Решением неравенства является вся числовая прямая.
3) Решением неравенства является одна точка.
4) Решением неравенства является закрытый промежуток.
5) Решением неравенства является открытый промежуток.
6) Решением неравенства является объединение двух промежутков
Объяснение:
y = -x
1) Функция имеет единственный ноль к точке (0, 0)
2) Область определения функции ( -∞ ; +∞)
3) Область значений такая же, т.е. ( -∞ ; +∞)
4) Область определения совпадает с областью значений
5) Функция располагается в 2 и 4 четвертях
6) Функция положительна ТОГДА И ТОЛЬКО ТОГДА, когда её аргумент отрицателен
7) Функция отрицательна ТОГДА И ТОЛЬКО ТОГДА, когда её аргумент положителен
8) Это монотонно убывающая функция
9) Функция убывает на всей своей области определения
10) Функция не имеет периода
11) График этой функции - прямая, проходящая через центр координат
12) Это нечётная функция
13) Тангенс угла наклона касательной к точке графика постоянен и равен -1 для всех х
14) Площадь под графиком от 0 до х равна
Здесь все свойства функции, выбирайте нужные.
На графике красным - сам график
Голубым подписаны четверти, их подписывать не обязательно.