Функция y=f(x) укажите а) область определения функции б) при каких значениях x f(x)> 2 в) промежутки возрастания и убывания функции г) нули функции д) наибольшее и наименьшее значение функции
Рационáльное числó (от лат. ratio «отношение, деление, дробь») — число, которое можно представить в виде обыкновенной дроби {\displaystyle {\frac {m}{n}}}{\frac {m}{n}}, где {\displaystyle m,n}m,n — целые числа, {\displaystyle n\neq 0}n\neq 0[1]. К примеру {\displaystyle {\frac {2}{3}}}{\frac {2}{3}}, где {\displaystyle m=2}{\displaystyle m=2}, а {\displaystyle n=3}n=3. Понятие дроби возникло несколько тысяч лет назад, когда, сталкиваясь с необходимостью измерять некоторые величины (длину, вес, площадь и т. п.), люди поняли, что не удаётся обойтись целыми числами и необходимо ввести понятие доли: половины, трети и т. п. Дробями и операциями над ними пользовались, например, шумеры, древние египтяне и греки.
x₁ = - 2 - √5
x₂ = - 2 + √5
x₃ = -3
x₄ = -1
(x² + 4x - 1)(x² + 4x + 3) = 0
Будем решать методом субституции:
t = x²+4x
Заменяем в исходном уравнении x²+4x на t:
(t - 1)(t + 3) = 0
Ищем корни:
t - 1 = 0
t₁ = 1
t + 3 = 0
t₂ = -3
Теперь приравниваем x²+4x к t₁ и к t₂:
1)
x² + 4x = 1
x² + 4x - 1 = 0
(x + 2)² - 5 = 0
(x + 2)² = 5
Ищем первый корень:
x + 2 = -√5
x₁ = - 2 - √5
Ищем второй корень:
x + 2 = √5
x₂ = - 2 + √5
2)
x² + 4x = -3
x² + 4x + 3 = 0
(x + 2)² - 1 = 0
(x + 2)² = 1
Ищем третий корень:
x + 2 = -1
x₃ = -3
Ищем четвёртый корень:
x + 2 = 1
x₄ = -1
Рационáльное числó (от лат. ratio «отношение, деление, дробь») — число, которое можно представить в виде обыкновенной дроби {\displaystyle {\frac {m}{n}}}{\frac {m}{n}}, где {\displaystyle m,n}m,n — целые числа, {\displaystyle n\neq 0}n\neq 0[1]. К примеру {\displaystyle {\frac {2}{3}}}{\frac {2}{3}}, где {\displaystyle m=2}{\displaystyle m=2}, а {\displaystyle n=3}n=3. Понятие дроби возникло несколько тысяч лет назад, когда, сталкиваясь с необходимостью измерять некоторые величины (длину, вес, площадь и т. п.), люди поняли, что не удаётся обойтись целыми числами и необходимо ввести понятие доли: половины, трети и т. п. Дробями и операциями над ними пользовались, например, шумеры, древние египтяне и греки.