Двузначное число, в котором х десятков и у единиц запишем как 10х+у, тогда условие задачи можно записать так: (10х+у):(х+у)=3(ост.7) 10х+у=3(х+у)+7 10х+у=3х+3у+7 10х-3х=3у-у+7 7х-7=2у 7(х-1)=2у|:2 y=7(x-1)/2 Заметим, что х≠0, т.к. х-число десятков х=1 у=7(1-1)/2=7*0/2=0/2=0 10 х=2 у=7(2-1)/2=7/2=3,5∉N х=3 у=7(3-1)/2=7*2/2=7 37 х=4 у=7(4-1)/2=7*3/2=21/2=10,5∈N x=5 y=7(5-1)/2=7*4/2=7*2=14 -не является однозначным числом
Получаем два варианта 10 и 37 10:(1+0)=10:1=10 -не подходит нашему условию (делится без остатка) 37:(3+7)=37:10=3(ост. 7) ответ: 37
тогда условие задачи можно записать так:
(10х+у):(х+у)=3(ост.7)
10х+у=3(х+у)+7
10х+у=3х+3у+7
10х-3х=3у-у+7
7х-7=2у
7(х-1)=2у|:2
y=7(x-1)/2
Заметим, что х≠0, т.к. х-число десятков
х=1 у=7(1-1)/2=7*0/2=0/2=0 10
х=2 у=7(2-1)/2=7/2=3,5∉N
х=3 у=7(3-1)/2=7*2/2=7 37
х=4 у=7(4-1)/2=7*3/2=21/2=10,5∈N
x=5 y=7(5-1)/2=7*4/2=7*2=14 -не является однозначным числом
Получаем два варианта 10 и 37
10:(1+0)=10:1=10 -не подходит нашему условию (делится без остатка)
37:(3+7)=37:10=3(ост. 7)
ответ: 37
х + y = 13 и 2х + 4y = 38 (система)
х + y = 13 => y = 13 - х
2х + 4y = 38 2х + 4(13 - х) = 38
2х + 4(13 - х) = 38
2х + 52 - 4х = 38
- 2х = 38 - 52
- 2х = - 14
х = 7 (количество двухместных лодок)
y = 13 - 7 = 6 (количество четырехместных лодок)
2. Пусть бригад по 3 человека было х , а бригад по 4 человека y, тогда
х + y = 18 и 3х + 4y = 65 (система)
х + y = 18 => y = 18 - х
3х + 4y = 65 3х + 4(18 - х) = 65
3х + 4(18 - х) = 65
3х + 72 - 4х = 65
- х = - 7
х = 7 (количество бригад по 3 человека)
y = 18 - 7 = 11 (количество бригад по 4 человека)