В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Kats203
Kats203
13.03.2022 10:43 •  Алгебра

Функция задана формулой f(x) = x² - 9

a) найдите f(0) , f(-4)
б) найдете значение x , при которых f(x) = -8 ; f(x) = 0​

Показать ответ
Ответ:
Влад1488228
Влад1488228
18.07.2020 09:12
a^2x- 2a^2=49x+14a
\\\
a^2x-49x=2a^2+14a
\\\
(a^2-49)x=2a(a+7)
\\\
(a-7)(a+7)x=2a(a+7)
Рассмотрим три случая:
1) При а=7 получим:
(7-7)\cdot (7+7)\cdot x=2\cdot7\cdot(7+7)
\\\
0\cdot 14\cdot x=14\cdot14
\\\
0\cdot x=196
Получившееся уравнение не имеет решений.
2) При а=-7 получим:
(-7-7)\cdot (-7+7)\cdot x=2\cdot(-7)\cdot(-7+7) \\\ 
-14\cdot 0\cdot x=-14\cdot0 \\\ 0\cdot x=0
Получившееся уравнение имеет бесконечное множество корней.
3) Если а≠7 и а≠-7, то разделим левую и правую часть уравнения на (а+7)(а-7)
\dfrac{(a-7)(a+7)}{(a-7)(a+7)} \cdot x= \dfrac{2a(a+7)}{(a-7)(a+7)} 
\\\
x= \dfrac{2a}{a-7}
Именно в этом случае уравнение будет иметь один корень.
ответ: a\in(-\infty;-7)\cup(-7;7)\cup(7;+\infty)

x^2-(a^2-17a+83)x-21=0
Прежде чем рассматривать сумму корней докажем, что уравнение всегда будет иметь корни. Находим дискриминант:
D=(a^2-17a+83)^2-4\cdot1\cdot(-21)=(a^2-17a+83)^2+84
Сумма неотрицательного числа (квадрат) и положительного числа есть число положительное, значит дискриминант положительный и уравнение имеет два корня при любом значении а.
Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком:
x_1+x_2=a^2-17a+83
Выражение f(a)=a^2-17a+83 представляет собой квадратичную функцию, графиком которой является парабола ветвями вверх. Наименьшее значение такой функции достигается в вершине, которую вычислим по формуле:
a_{min}=-\frac{B}{2A} =-\frac{-17}{2\cdot1} =8.5
Иначе можно было найти ответ приравняв к нулю первую производную функции:
(a^2-17a+83)'=0
\\\
2a-17=0
\\\
a_{min}= \frac{17}{2} =8.5
ответ: 8,5
0,0(0 оценок)
Ответ:
dima11232
dima11232
11.06.2020 06:14
Решение:
y(x)=x²/(x-1)
1) Область определения: (- ∞;1) (1;∞)
2) Множество значений: (0;∞)
3) Проверим является ли функция четной или нечетной:
y(х) = x²/(x-1)
y(-x)=x²/(-x-1) , так как y(х) ≠y(-х) и y(-х) ≠-y(х) , то функция не является ни четной ни не четной.
4)Найдем координаты точек пересечения с осями координат:
а) с осью ОХ: у=0, получаем: x²/(x-1) =0,
x²=0
x=0 график пересекат ось обсцисс и ординат в точке (0;0)
5) Найдем точки экстремума и промежутки возрастания и убывания функции:
y'=(2x(x-1)-x²)/(x-1)²=(x²-2x)/(x-1)²; y'=0
(x²-2x)/(x-1)²=0,
x²-2x=0
x1=0
x2=2 Получили 2 стационарные точки, проверим их на экстремум:
Так как на промежутках (- ∞;0) (2;∞) y'>0, то на этих промежутках функция возрастает.
Так как на промежутках (0;1) (1;2) у'< 0, то на этих промежутках функция убывает.
Точка х=0 является точкой максимума у (0)=0
Точка х=2 является точкой минимума у (2)=4
6) Найдем промежутки выпуклости и точки перегиба функции:
fу"=((2x-2)(x-1)²-2(x-1)(x²-2x))/(x-1)^4=2/(x-1)³; y"=0
2/(x-1)³=0, уравнение не имеет корней, следовательно точек перегиба функция не имеет.
Так как на промежутке (1;∞) , y"> 0, то на этом промежутке график функции направлен выпуклостью вниз.
Так как на промежутке (- ∞;1) y"< 0 то на этом промежутке график функции направлен выпуклостью вверх
7) Проверим имеет ли график функции асимптоты:
а) вертикальные. Найдем односторонние пределы в точке разрыва х=1
lim (прих->1-0) (x²/(x-1))=-∞
lim (прих->1+0) (x²/(x-1))=∞ так как пределы бесконечны то прямая х=1 является вертикальной асимптотой.
б) Найдем наклонные (горизонтальные) асимптоты вида у=kx+b
k=lim (при х->∞)(y(x)/x)=lim (при х->∞)( x²/(x(x-1))=1
b=lim (при х->∞)(y(x)-kx)=lim (при х->∞)(x²/(x-1)-x)=1
Итак прямая у=x+1 является наклонной асимптотой.
Все стройте график.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота