Получившееся уравнение не имеет решений. 2) При а=-7 получим:
Получившееся уравнение имеет бесконечное множество корней. 3) Если а≠7 и а≠-7, то разделим левую и правую часть уравнения на (а+7)(а-7)
Именно в этом случае уравнение будет иметь один корень. ответ:
Прежде чем рассматривать сумму корней докажем, что уравнение всегда будет иметь корни. Находим дискриминант:
Сумма неотрицательного числа (квадрат) и положительного числа есть число положительное, значит дискриминант положительный и уравнение имеет два корня при любом значении а. Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком:
Выражение представляет собой квадратичную функцию, графиком которой является парабола ветвями вверх. Наименьшее значение такой функции достигается в вершине, которую вычислим по формуле:
Иначе можно было найти ответ приравняв к нулю первую производную функции:
Решение: y(x)=x²/(x-1) 1) Область определения: (- ∞;1) (1;∞) 2) Множество значений: (0;∞) 3) Проверим является ли функция четной или нечетной: y(х) = x²/(x-1) y(-x)=x²/(-x-1) , так как y(х) ≠y(-х) и y(-х) ≠-y(х) , то функция не является ни четной ни не четной. 4)Найдем координаты точек пересечения с осями координат: а) с осью ОХ: у=0, получаем: x²/(x-1) =0, x²=0 x=0 график пересекат ось обсцисс и ординат в точке (0;0) 5) Найдем точки экстремума и промежутки возрастания и убывания функции: y'=(2x(x-1)-x²)/(x-1)²=(x²-2x)/(x-1)²; y'=0 (x²-2x)/(x-1)²=0, x²-2x=0 x1=0 x2=2 Получили 2 стационарные точки, проверим их на экстремум: Так как на промежутках (- ∞;0) (2;∞) y'>0, то на этих промежутках функция возрастает. Так как на промежутках (0;1) (1;2) у'< 0, то на этих промежутках функция убывает. Точка х=0 является точкой максимума у (0)=0 Точка х=2 является точкой минимума у (2)=4 6) Найдем промежутки выпуклости и точки перегиба функции: fу"=((2x-2)(x-1)²-2(x-1)(x²-2x))/(x-1)^4=2/(x-1)³; y"=0 2/(x-1)³=0, уравнение не имеет корней, следовательно точек перегиба функция не имеет. Так как на промежутке (1;∞) , y"> 0, то на этом промежутке график функции направлен выпуклостью вниз. Так как на промежутке (- ∞;1) y"< 0 то на этом промежутке график функции направлен выпуклостью вверх 7) Проверим имеет ли график функции асимптоты: а) вертикальные. Найдем односторонние пределы в точке разрыва х=1 lim (прих->1-0) (x²/(x-1))=-∞ lim (прих->1+0) (x²/(x-1))=∞ так как пределы бесконечны то прямая х=1 является вертикальной асимптотой. б) Найдем наклонные (горизонтальные) асимптоты вида у=kx+b k=lim (при х->∞)(y(x)/x)=lim (при х->∞)( x²/(x(x-1))=1 b=lim (при х->∞)(y(x)-kx)=lim (при х->∞)(x²/(x-1)-x)=1 Итак прямая у=x+1 является наклонной асимптотой. Все стройте график.
Рассмотрим три случая:
1) При а=7 получим:
Получившееся уравнение не имеет решений.
2) При а=-7 получим:
Получившееся уравнение имеет бесконечное множество корней.
3) Если а≠7 и а≠-7, то разделим левую и правую часть уравнения на (а+7)(а-7)
Именно в этом случае уравнение будет иметь один корень.
ответ:
Прежде чем рассматривать сумму корней докажем, что уравнение всегда будет иметь корни. Находим дискриминант:
Сумма неотрицательного числа (квадрат) и положительного числа есть число положительное, значит дискриминант положительный и уравнение имеет два корня при любом значении а.
Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком:
Выражение представляет собой квадратичную функцию, графиком которой является парабола ветвями вверх. Наименьшее значение такой функции достигается в вершине, которую вычислим по формуле:
Иначе можно было найти ответ приравняв к нулю первую производную функции:
ответ: 8,5
y(x)=x²/(x-1)
1) Область определения: (- ∞;1) (1;∞)
2) Множество значений: (0;∞)
3) Проверим является ли функция четной или нечетной:
y(х) = x²/(x-1)
y(-x)=x²/(-x-1) , так как y(х) ≠y(-х) и y(-х) ≠-y(х) , то функция не является ни четной ни не четной.
4)Найдем координаты точек пересечения с осями координат:
а) с осью ОХ: у=0, получаем: x²/(x-1) =0,
x²=0
x=0 график пересекат ось обсцисс и ординат в точке (0;0)
5) Найдем точки экстремума и промежутки возрастания и убывания функции:
y'=(2x(x-1)-x²)/(x-1)²=(x²-2x)/(x-1)²; y'=0
(x²-2x)/(x-1)²=0,
x²-2x=0
x1=0
x2=2 Получили 2 стационарные точки, проверим их на экстремум:
Так как на промежутках (- ∞;0) (2;∞) y'>0, то на этих промежутках функция возрастает.
Так как на промежутках (0;1) (1;2) у'< 0, то на этих промежутках функция убывает.
Точка х=0 является точкой максимума у (0)=0
Точка х=2 является точкой минимума у (2)=4
6) Найдем промежутки выпуклости и точки перегиба функции:
fу"=((2x-2)(x-1)²-2(x-1)(x²-2x))/(x-1)^4=2/(x-1)³; y"=0
2/(x-1)³=0, уравнение не имеет корней, следовательно точек перегиба функция не имеет.
Так как на промежутке (1;∞) , y"> 0, то на этом промежутке график функции направлен выпуклостью вниз.
Так как на промежутке (- ∞;1) y"< 0 то на этом промежутке график функции направлен выпуклостью вверх
7) Проверим имеет ли график функции асимптоты:
а) вертикальные. Найдем односторонние пределы в точке разрыва х=1
lim (прих->1-0) (x²/(x-1))=-∞
lim (прих->1+0) (x²/(x-1))=∞ так как пределы бесконечны то прямая х=1 является вертикальной асимптотой.
б) Найдем наклонные (горизонтальные) асимптоты вида у=kx+b
k=lim (при х->∞)(y(x)/x)=lim (при х->∞)( x²/(x(x-1))=1
b=lim (при х->∞)(y(x)-kx)=lim (при х->∞)(x²/(x-1)-x)=1
Итак прямая у=x+1 является наклонной асимптотой.
Все стройте график.