В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Алька3105
Алька3105
27.12.2022 03:46 •  Алгебра

Функция задана формулой p(x) = (х + 1): 1) найти р (4), p (0), (-1, 1), p (1), p (3), р(-12), p (2,5);
2) найти значение хесли р (x) = 15, p(x) = 2,4, p (x) = -9,
р (x) = 0, Р(х) = -1, p( x) = -2,4.​

Показать ответ
Ответ:
Gergoo
Gergoo
03.07.2020 22:27

Объяснение:

Найти площадь фигуры, ограниченной линиями:

у=х² +6х+12; х=-1; х=-3; у = 0​

Построим указанные кривые на координатной плоскости

у=х² +6х+12 - уравнение параболы. Однозначно строится по трем точкам. Вершина параболы находится в точке с координатами(-3;3).

Еще две точки найдем подставив координаты х = -1 и х = -3 в уравнение параболы

у(-3) = 9 - 18 + 12 = 3

у(-1) = 1 - 6 + 12 = 7

Координаты двух других точек (-3;3) и (-1;7)

Уравнения х=-1; х=-3 на координатной плоскости описывают прямые.

Данные прямые параллельны оси абсцисс  и проходят через точки (-1;0) и (-3;0) соответственно.

Прямая y=0 является осью ординат.

Фигура внутри полученного пересечения снизу ограничена прямой y=0 справа ограничена прямой х = -1, слева прямой х=-3, а сверху ограничена параболой у=х² +6х+12

Для нахождения площади фигуры найдем интеграл с пределами интегрирования от -3 до -1 и  функцией х² +6х+12

S = \int\limits^{-1}_{-3} {(x^2+6x+12)} \, dx=\frac{x^3}{3}+3x^2+12x\left[\begin{array}{ccc}-1&\\-3\end{array}\right] = \frac{-1}{3}+3-12-(-\frac{27}{3}+27-36)= -\frac{1}{3}-9 +18 = 9-\frac{1}{3} = 8,67


Найти площадь фигуры, ограниченной линиями:у=х^2 +6х+12; х=-1; х=-3; у = 0​
0,0(0 оценок)
Ответ:
ziiaratmagomedova
ziiaratmagomedova
03.07.2020 22:27

Объяснение:

Найти площадь фигуры, ограниченной линиями:

у=х² +6х+12; х=-1; х=-3; у = 0​

Построим указанные кривые на координатной плоскости

у=х² +6х+12 - уравнение параболы. Однозначно строится по трем точкам. Вершина параболы находится в точке с координатами(-3;3).

Еще две точки найдем подставив координаты х = -1 и х = -3 в уравнение параболы

у(-3) = 9 - 18 + 12 = 3

у(-1) = 1 - 6 + 12 = 7

Координаты двух других точек (-3;3) и (-1;7)

Уравнения х=-1; х=-3 на координатной плоскости описывают прямые.

Данные прямые параллельны оси абсцисс  и проходят через точки (-1;0) и (-3;0) соответственно.

Прямая y=0 является осью ординат.

Фигура внутри полученного пересечения снизу ограничена прямой y=0 справа ограничена прямой х = -1, слева прямой х=-3, а сверху ограничена параболой у=х² +6х+12

Для нахождения площади фигуры найдем интеграл с пределами интегрирования от -3 до -1 и  функцией х² +6х+12

S = \int\limits^{-1}_{-3} {(x^2+6x+12)} \, dx=\frac{x^3}{3}+3x^2+12x\left[\begin{array}{ccc}-1&\\-3\end{array}\right] = \frac{-1}{3}+3-12-(-\frac{27}{3}+27-36)= -\frac{1}{3}-9 +18 = 9-\frac{1}{3} = 8,67


Найти площадь фигуры, ограниченной линиями:у=х^2 +6х+12; х=-1; х=-3; у = 0​
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота