Функция задана формулой y=-4x+17. Определите : A) значение y , если xx=2,5
Б) значение x , при котором y=-1
В) проходит ли график функции через точку A(-2;7)
2. Постройте графики функции a)y=-2x+5, б)y=x-7 в)y=x-7 г)y=-4 x д ) x=-4
3.найдите координаты точки пересечения графиков функций y= 47x-37 и y = -13x+23.
4. Для графика функций y=x+5 найдите точки пересечения с носят координат
sin2x - (1-sin²x) =0 ;
2sinxcosx -cos²x =0 ;
cosx(2sinx -cosx) =0 ;
[cosx =0 ;2sinx-cosx =0.⇔ [cosx =0 ;sinx=(1/2)cosx.⇔[cosx =0 ;tqx=1/2.
[ x=π/2 +πn ; x =arctq1/2+πn , n∈Z.
2) ;
ctq2x*cos²x - ctq2x*sin²x =0 ;
ctq2x*(cos²x - sin²x) =0 ;
ctq2x*cos2x =0 ;
sin2x =0 * * *cos2x = ± 1 ≠0→ ОДЗ * * *
2x =πn , n∈Z ;
x =(π/2)*n , n∈Z .
3) ;
3sin²x/2 -2sinx/2 =0 ;
3sinx/2 (sinx/2 -2/3) =0 ;
[sinx/2 =0 ; sinx/2 =2/3 .⇒[x/2 =πn ; x/2= arcsin(2/3) +πn ,n∈Z.⇔
[x =2πn ; x= 2arcsin(2/3) +2πn ,n∈Z.
4) ;
* *cos2α =cos²α -sin²α =cos²α -(1-sin²α)=2cos²α -1⇒1+cos2α=2cos²α * *
cos3x = 1+cos2*(3x) ; * * * α = 3x * * *
cos3x = 2cos²3x ;
2cos²3x -cos3x =0 ;
2cos3x(cos3x -1/2) =0 ;
[cos3x =0 ; cos3x =1/2 ⇒[3x=π/2+πn ; 3x= ±π/3+2πn ,n∈Z.⇔
[x=π/6+πn/3 ; x= ±π/9+(2π/3)*n ,n∈Z.
Область визначення функції - множина, на якому задається функція .
1. ВизначенняЯкщо задана функція, яка діє з однієї безлічі в інше, то безліч, з якого діє дана функція, називається областю визначення.Більш формально, нехай задано відображення , Яке відображає безліч в , Тобто: ; Тодібезліч називається областю визначення функції і позначається D (f) , Або (Від англ. Domain "область").Звичайно передбачається, що , Через що поняття області визначення виглядає тавтологією: "область визначення функції - це область, де визначена функція". Для того, щоб надати чіткий зміст даного поняття, розглядається деякий більш широке безліч, яке називається областю відправлення, і тоді область визначення функції - Це таке підмножина безлічі (Яке і є область відправлення функції), де для кожного елемента визначено значення функции .Цей факт коротко записують у вигляді: .