35 мин = 35/60 = 7/12 ч х (км/ч) - скорость 1-ого велосипедиста у (км/ч) - скорость 2-ого велосипедиста х+у (км/ч)- скорость сближения велосипедистов { (x+y)*1=28 { 28 - 28 = 7 y x 12
x+y=28 x=28-y 28x-28y= 7 xy 12 12*28(x-y)=7xy 12*4(x-y)=xy 48(x-y)=xy 48(28-y-y)=(28-y)y 48(28-2y)=28y-y² y²-96y-28y-1344=0 y²-124y-1344=0 D=(-124)²-4(-1344)=15376-5376=10000=100² y₁=(124-100)/2=24/2=12 (км/ч) - скорость второго велосипедиста. у₂=224/2=112 - не подходит, так как велосипедист не может развивать такую скорость.
х+12=28 х=28-12 х=16 (км/ч) - скорость первого велосипедиста. ответ: 16 км/ч и 12 км/ч.
Натуральные числа разбиваются на два непересекающихся множества вида 2m и 2m+1, где m - натуральное. а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным. (2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 = 2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа. Покажем, что число не может быть и квадратом нечётного числа: n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом? (n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n Не может.
Цельная и стройная запись решения: n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2 Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.
х (км/ч) - скорость 1-ого велосипедиста
у (км/ч) - скорость 2-ого велосипедиста
х+у (км/ч)- скорость сближения велосипедистов
{ (x+y)*1=28
{ 28 - 28 = 7
y x 12
x+y=28
x=28-y
28x-28y= 7
xy 12
12*28(x-y)=7xy
12*4(x-y)=xy
48(x-y)=xy
48(28-y-y)=(28-y)y
48(28-2y)=28y-y²
y²-96y-28y-1344=0
y²-124y-1344=0
D=(-124)²-4(-1344)=15376-5376=10000=100²
y₁=(124-100)/2=24/2=12 (км/ч) - скорость второго велосипедиста.
у₂=224/2=112 - не подходит, так как велосипедист не может развивать такую скорость.
х+12=28
х=28-12
х=16 (км/ч) - скорость первого велосипедиста.
ответ: 16 км/ч и 12 км/ч.
а) (2m)^2 + 2m + 1 = 4m^2 + 2m + 1 = 2(2m^2+m) + 1, где 2m^2+m натуральное (в силу того, что произведение и сумма натуральных числе всегда натуральна), будет нечётным.
(2m+1)^2 + (2m+1) + 1 = 4m^2 + 4m + 1 + 2m + 1 + 1 = 4m^2 + 6m + 2 + 1 =
2(2m^2 + 3m + 1) + 1, где 2m^2 + 3m + 1 натуральное, будет нечётным.
b) Квадрат чётного числа - чётный. Потому число n^2 + n + 1 не может быть квадратом чётного числа.
Покажем, что число не может быть и квадратом нечётного числа:
n^2 + n + 1 = n^2 + 2n + 1 - n = (n+1)^2 - n
Т.е. число n^2 + n + 1 отличается от квадрата (n + 1)^2 на n единиц. Может ли такое число быть квадратом?
(n + 1)^2 - n^2 = n^2 + 2n + 1 - n^2 = 2n + 1 > n
Не может.
Цельная и стройная запись решения:
n^2 < n^2 + n + 1 = (n + 1)^2 - n < (n + 1)^2
Т.к. число n^2 + n + 1 лежит между двумя квадратами последовательных натуральных чисел, само оно не может быть квадратом натурального числа.