(1) 1/5 в степени х+4 = (1/5) в -2 степени х+4= -2, х= -8 2) 1/2 в степени х-4 = (1/2) в -6 степени х-4=-6, х= -2 3) 1/3 = (1/3) в степени -10х+3 1=-10х+3, х= 1/5 4) 4 в степени 5х-10 = 4 в степени 5 5х-10=1, х= 2,2 5) 0,1 в степени х-5 = 0,1 в степени -2 х-5=-2, х= 3 6) 1/5 в степени 2х-2 = (1/5) в степени -4 2х-2=-4, х= -1 7) 1/4 в степени х-4 = (1/4) в степени -3х х-4=-3х, х=1 8) 1/11 в степени х-5 = (1/11) в степени -2 х-5=-2, х=3 9) 7 в степени 2х-2 = 7 в степени -1 2х-2=-1, х= 0,5 10) 1/4 в степени 2х-2 = 1/4 в степени -4 2х-2=-4, х=-1
х+4= -2, х= -8
2) 1/2 в степени х-4 = (1/2) в -6 степени
х-4=-6, х= -2
3) 1/3 = (1/3) в степени -10х+3
1=-10х+3, х= 1/5
4) 4 в степени 5х-10 = 4 в степени 5
5х-10=1, х= 2,2
5) 0,1 в степени х-5 = 0,1 в степени -2
х-5=-2, х= 3
6) 1/5 в степени 2х-2 = (1/5) в степени -4
2х-2=-4, х= -1
7) 1/4 в степени х-4 = (1/4) в степени -3х
х-4=-3х, х=1
8) 1/11 в степени х-5 = (1/11) в степени -2
х-5=-2, х=3
9) 7 в степени 2х-2 = 7 в степени -1
2х-2=-1, х= 0,5
10) 1/4 в степени 2х-2 = 1/4 в степени -4
2х-2=-4, х=-1
ОДЗ:
Решаем каждое неравенство:
⇒ ⇒
⇒ ⇒
Подмодульные выражения обращаются в 0 в точках
и
Это точки делят числовую прямую на три промежутка.
Раскрываем знак модуля на промежутках:
(-∞;-4]
|x+4|=-x-4
|x|=-x
⇒ ⇒ x < 1
решение неравенства (-∞;-4]
(-4;0]
|x+4|=x+4
|x|=-x
⇒ ⇒ x < -2 или x > 1
решение неравенства (-4;-2)
(0;+∞)
|x+4|=x+4
|x|=x
⇒ ⇒ x > 1
решение неравенства (1;+∞]
Объединяем ответы трех случаев:
при
ОДЗ:
Решаем неравенство:
Два случая:
если основание логарифмической функции >1, то она возрастает и большему значению функции соответствует большее значение аргумента
⇒ ⇒
второе неравенство решаем на промежутках так:
(-∞;-4]
⇒ ⇒ ⇒ (-3;-1)
не принадлежат (-∞;-4]
на (-4;0]
⇒ ⇒ x < -5 или x > 1
не принадлежат (-4;0]
(0;+∞)
⇒ ⇒ ⇒
о т в е т этого случая
если основание логарифмической функции 0 < a < 1, то она убывает и большему значению функции соответствует меньшее значение аргумента
⇒ ⇒
второе неравенство решаем на промежутках так:
(-∞;-4]
⇒ ⇒ ⇒
(-∞;-3)U(1;+∞)
о т в е т. (-∞;-4]
на (-4;0]
⇒ ⇒ -5 < x < 1
о т в е т. (-4;0]
(0;+∞)
⇒ ⇒ ⇒
о т в е т этого случая
С учетом ОДЗ получаем окончательный ответ: