Футболіст Кіндрат Бабайкін у середньому забиває один гол після кожних 10 ударів у площину воріт. Під час останнього матчу він поцілив у площину воріт чотири рази. Яка ймовірність того, що у цьому матчі на рахунку пана Бабайкіна буде дубль (два голи) у ворота суперників? Відповідь округліть до тисячних.
у²-3у - 1 = у² - 2 *1,5 у + (1,5)² - 3,25= (у-1,5)²- 3,25
если у² -3у -1 = 11 , следовательно :
(у-1,5)² - 3,25=11
(у-1,5)²= 11+3,25
(у-1,5)²=14,25
Теперь выделим неполный квадрат из второго выражения:
8у²- 24у - 9 = 8 (у²- 3у - 9/8 ) = 8(у²-3у -1,125) =
= 8 ( у² -3у + 2,25 - 3,375) = 8 (( у-1,5)² - 3,375 ) =
= 8(у-1,5)² - 8 * 3,375 = 8(у-1,5)² - 27
если (у-1,5)²=14,25 , то из второго выражения получается:
8*14,25 -27 = 114-27 = 87
ответ: если у²-3у-1=11 , то 8у²-24у -9 = 87.
Сторона данного треугольника а(3) равна Р:3=6√3:3=2√3 дм
Формула радиуса окружности, описанной около правильного треугольника:
R=a/√3 =>
R=2√3:√3=2 дм
Формула стороны правильного многоугольника через радиус вписанной окружности:
а(n)=2r•tg(180°:n), где r – радиус вписанной окружности, n – число сторон,
Для правильного шестиугольника tg(180°:n)=tg30°=1/√3
a₆=2•2•1/√3=4/√3
P=6•4/√3=8√3 дм
—————
Как вариант: Правильный шестиугольник состоит из 6 равных правильных треугольников.
На рисунке приложения ОН - радиус описанной около правильного треугольника окружности и в то же время высота одного из 6 правильных треугольников, все углы которого 60°; АВ - сторона шестиугольника. Задача решается с т.Пифагора.